

5 September 2023

Whakatāne District Council C/- Astrid Hutchinson Private Bag 1002 Whakatāne 3158

Dear Madam,

Resource Consent Application RM23–0010 for comprehensive stormwater consent for existing stormwater discharges from the Whakatane Township and associated network structures located in the bed/bank of a river or stream, and/or the CMA – Request for Further Information pursuant to Section 92 of the Resource Management Act 1991 (RMA)

Following review of your application the Bay of Plenty Regional Council requests the further information in order to gain a full understanding of the proposal and/or its potential environmental effects as detailed below.

In order to better understand the potential effects of the proposal, the following information is required:

- a) Policy BW P2 (Policy 99) of the Regional Natural Resources Plan (RNRP) requires existing activities in the beds of streams, rivers and lakes to comply with Table BW 2. Specifically, BW 2(b) requires such activities to not cause a breach of the Water Quality Classification of the receiving stream, river, or lake. Please provide an assessment against Table BW 2(b).
- b) Section 9.4.10 of the application implies that the application can be granted in light of Section 107 of the RMA, however, this is not outlined clearly in Section 4 of the Hamill report. Please provide further assessment on Section 107 of the RMA and clearly outline whether, after reasonable mixing, the contaminant or water discharged is likely to give rise to all or any of the matters listed in 107(1)(c)-(g).
- c) Section 7.6 of the application discusses Natural Hazards and identifies there are areas of risk within the stormwater network. It is noted that the management of the stormwater network in regard to natural hazards (with the exception of climate change) is not addressed in the Stormwater Catchment Management Plan (CMP). Please address these matters in the CMP, or if not, please provide an explanation of why these matters are not addressed in the CMP.
- d) Please provide the existing expiry dates of the consents sought to be managed under this resource consent.

To understand the potential effects of the proposal on **ecological values and water quality**, the following information is required:

- e) In relation to the report titled *Whakatane CSC Potential effects on ecology and water quality* (Hamill 2023):
 - i. In Table 3.8 and 4.9, what does the "*" mean in relation to Sullivan Lake?
 - ii. ANZECC and DGV are used together/interchangeably throughout the report, but they are separate guideline documents. ANZG (2018) is the most recent up to date guideline document, whereas ANZECC (2000) has been superseded. Please update the report to ensure the reference used throughout is to the ANZG (2018) document. If ANZECC (2000) still needs to be used within the report, please state

that it has been superseded and outline the reasons why it is being used.

- iii. There is a spelling area on page 49, first set of bullets, last bullet point, last sentence "...particularly important to <u>collected</u>...". Please change this to "collect".
- f) In relation to the *Whakatane Comprehensive Stormwater Consent Monitoring Plan* (Hamill 2019 Draft),
 - ANZECC and DGV are used interchangeably throughout the monitoring plan, but ANZECC and ANZG are different (but very similar in many triggers) documents. As mentioned above, ANZG (2018) is the most recent up to date guideline document, whereas ANZECC (2000) has been superseded. Please update the monitoring plan to ensure the reference used throughout is to the ANZG (2018) document. If ANZECC (2000) still needs to be used, please state that it has been superseded and outline the reasons why it is being used.
 - ii. Table 1.4 consists of outdated data. The current sediment quality needs analysing.
 - iii. Table 2.1 states an "annual" monitoring frequency, is this once a year? And is this for a baseline or rainfall event?
 - iv. Section 2.3 discusses the proposed frequency of water quality sampling. The review of the draft ecological assessment noted:

Other councils do four baselines in the four seasons and rainfall triggers as well. Compare to consent triggers for exceedances and use an adaptive management approach. E.g., TCC Comp consent requires an investigation (and mitigation) if baseline exceeds trigger at a site in consecutive seasons or a rainfall event is triggered in the same season at the same site in consecutive years. Would be good to include a table of survey sites for water quality monitoring. Could also include regular monitoring of the freshwater and marine receiving environments – with higher priority sites surveyed two yearly and less critical sites surveyed every five years.

This approach is still recommended as it will enable meaningful and comprehensive data collection and analysis.

- v. In section 2.4.3, paragraph 4 mentions excess water should be decanted. Does the sampler need more guidance, so the sediment sample isn't compromised/lost to some degree?
- vi. In section 2.5.2, paragraph 3 mentions there should be "consideration given for [additional analyses] organic carbon and dry matter" etc. Organic carbon and dry matter should be routinely surveyed in sediment samples.
- vii. In Table 3.2, Cd and Ni are faded out, why is this?

A technical review has been completed on the following documents included within the application:

- Comprehensive Stormwater Consent Assessment of Effects on the Environment January
- 2023 (AEE).
- Whakatāne Urban Stormwater Catchment Management Plan January 2023
- Whakatāne Urban Area Stormwater Catchment Description 2 August 2022
- Whakatāne Urban Stormwater Modelling 25 September 2020
- Stormwater Monitoring Plan March 2019

To better understand the application of these documents, the following information is required:

- g) In their Climate Risk Assessment Guide, the Ministry for the Environment (MoE) recommends that Councils model an RCP of 8.5 to identify the most significant risk. Please model an RCP 8.5 1% 72-hour event (including in the Wainui te Whara).
- h) Please model the current climate for scenarios C1-C6, and where any further modelling is proposed, please consult with BOPRC. In particular, please include the roof water from any structures in the modelling.
- The zones identified in Table 5-6 (particularly those with 500mm or more ponding) of the Stormwater Modelling report, should be referenced in the Catchment Management Plan (CMP) to be investigated further and cross-referenced with any flooding reports along with carrying out a floor level survey.
- j) Please provide a GIS map layer clearly showing existing consent discharge points and the corresponding catchment areas. This will be extremely helpful for future compliance.

- k) In relation to the stormwater pump stations:
 - i. What return period events for their respective catchments do the pumping rates correspond to?
 - ii. How much formalised storage exists in the catchments /informal storage before floor levels are threatened?
 - iii. How many Stormwater pumps have back-up generators or provision for nonelectric pumping? Back up plans?
 - iv. What kind of rain event can be catered for with gravity outfalls only, and for no pumps and no gravity outfalls?
- I) The promotion of soakage is appropriate however the soakage rates given in Figure 4 of the CMP for different Whakatāne locations are a mix of wrong or extremely high. Although some of the quoted soakage rates may be possible under dry conditions for short durations, they are not appropriate for designing for soakage under saturated conditions and longer durations. These soakage rates should be reviewed and amended to reflect realistic soakage rates for longer duration storage/soakage mitigation for new builds.
- m) Please comment on whether there will be a requirement for new builds to mitigate up to RCP 8.5, 1% 72-hour event, and if so, what will be the mechanism? (e.g., District Plan/ ECOP).
- n) Please provide more comment around the 10% AEP current level of service of the pipe network system (current and future climate). Please address whether you think this level of service is feasible and whether a 20% AEP would be more realistic.
- o) Please provide information on the condition of all the existing stormwater outlets, including photographs.
- p) The soakage system around the Whakatane Pool is inundated in small events. Are there any plans for remediation or investigation?

Once we have received all information necessary to assess the effects of your proposal on the receiving environment, we will continue processing your application.

When and how should I respond?

In accordance with section 92A(1) of the Resource Management Act 1991 (RMA) you must respond to this request by **26 September 2023**. You may either:

- Provide the required information;
- Write to us stating that you will supply the required information, but require a longer period in which to do so; or
- Write to us stating that you refuse to provide the required information.

What happens if I do not respond or refuse to provide the information?

If you do not respond by **26 September 2023** or respond indicating your refusal to provide the requested information, then under section 92B(2) of the RMA we must continue to process your application but your application is likely to be notified (incurring extra costs) and/or declined. If we decline your application, you have the right of appeal (s120 RMA) to the Environment Court.

Please feel free to contact me regarding the requirements of this letter, on 07 927 5748.

Ngā mihi nui,

Bethany Bennie (Consultant Planner)

🔕 5 Quay St, PO Box 364, Whakatāne 3158, New Zealand 😰 0800 884 880 😰 0800 884 882 🗈 info@boprc.govt.nz 🥺 www.boprc.govt.nz

15 November 2023

Bay of Plenty Regional Council Quay Street Whakatāne 3121 BY EMAIL ATTN: Sean Grace Email: <u>sean.grace@boffamiskell.co.nz</u>

Dear Sean

RE: RESOURCE CONSENT APPLICATION RM23–0010 FOR COMPREHENSIVE STORMWATER CONSENT FOR EXISTING STORMWATER DISCHARGES FROM THE WHAKATANE TOWNSHIP AND ASSOCIATED NETWORK STRUCTURES LOCATED IN THE BED/BANK OF A RIVER OR STREAM, AND/OR THE CMA – REQUEST FOR FURTHER INFORMATION PURSUANT TO SECTION 92 OF THE RESOURCE MANAGEMENT ACT 1991 (RMA)

Please find below responses to the request for further information dated 5 September 2023 in relation to resource consent application RM23-0010.

a) Policy BW P2 (Policy 99) of the Regional Natural Resources Plan (RNRP) requires existing activities in the beds of streams, rivers and lakes to comply with Table BW 2. Specifically, BW 2(b) requires such activities to not cause a breach of the Water Quality Classification of the receiving stream, river, or lake. Please provide an assessment against Table BW 2(b).

Clarification was received that the above question relates to policy DW P1, not BW P2. Please refer to the attached assessment provided by Keith Hamill of River Lake Limited.

b) Section 9.4.10 of the application implies that the application can be granted in light of Section 107 of the RMA, however, this is not outlined clearly in Section 4 of the Hamill report. Please provide further assessment on Section 107 of the RMA and clearly outline whether, after reasonable mixing, the contaminant or water discharged is likely to give rise to all or any of the matters listed in 107(1)(c)-(g).

Please refer to the attached assessment provided by Keith Hamill of River Lake Limited.

c) Section 7.6 of the application discusses Natural Hazards and identifies there are areas of risk within the stormwater network. It is noted that the management of the stormwater network in regard to natural hazards (with the exception of climate change) is not addressed in the Stormwater Catchment Management Plan (CMP). Please address these matters in the CMP, or if not, please provide an explanation of why these matters are not addressed in the CMP.

As noted in the resource consent application (page 119), the potential impact of natural hazards is considered when infrastructure is designed and installed. Future land use changes or developments need to account for these hazards via any consent or plan process.

Section 7.6 of the consent application notes "[s]uch scenarios [natural hazard events] are hard to predict and, should they occur, will be managed through the either 'business as usual' methods, or under the Civil Defence and Emergency Management framework." The Council will respond as necessary in the event of any natural hazard that impacts on the stormwater network.

There is a high risk of landslides on the Whakatāne escarpment, as indicated on figure 1. It is not considered necessary to specifically address this risk in the CMP due to the small area of the stormwater network that could potentially be affected and the limited impact of any event.

Figure 1: Whakatāne landslide risk (source: Landslide Risk Assessment Map)

d) Please provide the existing expiry dates of the consents sought to be managed under this resource consent.

Consent number	Granted date	Expiry date
20183	6/03/1975	1/10/2026
20267	2/09/1976	1/10/2026
20319	1/09/1977	01/10/2026
21785-1	5/12/1985	1/10/2026
21785-2	5/12/1985	1/10/2026
24283	16/10/1995	31/08/2004
24801	4/12/1996	30/11/2011
60053	15/10/1998	31/10/2008
61841	10/12/2002	30/11/2022
62713	27/02/2005	30/06/2015
63352	26/10/2005	30/09/2030
65353	29/05/2008	30/04/2028
65604	1/06/2010	30/04/2045
67420	12/03/2013	28/02/2048
68057	4/08/2020	4/08/2040
RM20-0493-DC.01	30/10/2020	30/10/2023

- e) In relation to the report titled Whakatane CSC Potential effects on ecology and water quality (Hamill 2023):
 - In Table 3.8 and 4.9, what does the "*" mean in relation to Sullivan Lake? i.
 - ii. ANZECC and DGV are used together/interchangeably throughout the report, but they are separate guideline documents. ANZG (2018) is the most recent up to date guideline document, whereas ANZECC (2000) has been superseded. Please update the report to ensure the reference used throughout is to the ANZG (2018) document. If ANZECC (2000) still needs to be used within the report, please state that it has been superseded and outline the reasons why it is being used.
 - There is a spelling area on page 49, first set of bullets, last bullet point, last sentence iii. "...particularly important to collected...". Please change this to "collect".

Please refer to the attached response provided by Keith Hamill of River Lake Limited.

f) In relation to the Whakatane Comprehensive Stormwater Consent Monitoring Plan (Hamill 2019 Draft)

- ANZECC and DGV are used interchangeably throughout the monitoring plan, but ANZECC and i. ANZG are different (but very similar in many triggers) documents. As mentioned above, ANZG (2018) is the most recent up to date guideline document, whereas ANZECC (2000) has been superseded. Please update the monitoring plan to ensure the reference used throughout is to the ANZG (2018) document. If ANZECC (2000) still needs to be used, please state that it has been superseded and outline the reasons why it is being used.
- Table 1.4 consists of outdated data. The current sediment quality needs analysing. ii. As agreed, analysis of sediment will be required as a condition of consent.
- iii. Table 2.1 states an "annual" monitoring frequency, is this once a year? And is this for a baseline or rainfall event?
- iv. Section 2.3 discusses the proposed frequency of water quality sampling. The review of the draft ecological assessment noted:

Other councils do four baselines in the four seasons and rainfall triggers as well. Compare to consent triggers for exceedances and use an adaptive management approach. E.g., TCC Comp consent requires an investigation (and mitigation) if baseline exceeds trigger at a site in consecutive seasons or a rainfall event is triggered in the same season at the same site in consecutive years. Would be good to include a table of survey sites for water quality monitoring. Could also include regular monitoring of the freshwater and marine receiving environments with higher priority sites surveyed two yearly and less critical sites surveyed every five years.

This approach is still recommended as it will enable meaningful and comprehensive data collection and analysis.

- In section 2.4.3, paragraph 4 mentions excess water should be decanted. Does the sampler need v. more guidance, so the sediment sample isn't compromised/lost to some degree?
- vi. In section 2.5.2, paragraph 3 mentions there should be "consideration given for [additional analyses] organic carbon and dry matter" etc. Organic carbon and dry matter should be routinely surveyed in sediment samples.
- vii. In Table 3.2, Cd and Ni are faded out, why is this?

Please refer to the attached response provided by Keith Hamill of River Lake Limited.

g) In their Climate Risk Assessment Guide, the Ministry for the Environment (MoE) recommends that Councils model an RCP of 8.5 to identify the most significant risk. Please model an RCP 8.5 1% 72-hour event (including in the Wainui te Whara).

The Council uses the modelling information to assess flood risk. The RCP 6.0 climate change scenario was used as it is a mid-high range that the Council deems appropriate for assessing the existing system. Additional modelling using RCP 8.5 will be carried out on a case-by-case basis for greenfields

development and for sensitivity testing or long-life infrastructure projects and policy decisions. The Council considers that the use of RCP 6.0 is appropriate for consenting purposes to demonstrate the flood risk from a 1% AEP event.

h) Please model the current climate for scenarios C1-C6, and where any further modelling is proposed, please consult with BOPRC. In particular, please include the roof water from any structures in the modelling.

No further modelling is proposed, except on a case-by-case basis as noted in the response to (g) above. Please refer to the Whakatāne Urban Stormwater Model Review by Tonkin and Taylor dated 26 May 2022, which considered the effects of roof water runoff on flood levels.

i) The zones identified in Table 5-6 (particularly those with 500mm or more ponding) of the Stormwater Modelling report, should be referenced in the Catchment Management Plan (CMP) to be investigated further and cross-referenced with any flooding reports along with carrying out a floor level survey.

Verification against known flood depths was included in the model build. The CMP includes the flood assessment maps from the modelling report. It is not considered necessary to include additional reference to the modelling report results in the CMP.

The attached stormwater investment framework is used by the Council to assess and prioritise stormwater projects.

j) Please provide a GIS map layer clearly showing existing consent discharge points and the corresponding catchment areas. This will be extremely helpful for future compliance.

The map of the Council's stormwater network is publicly available on the Council's website. The Council's GIS mapping system does not identify specific discharge points by consent number.

k) In relation to the stormwater pump stations:

What return period events for their respective catchments do the pumping rates correspond to? i.

In most cases, the 10 year return is more than the pumping rate.

How much formalised storage exists in the catchments /informal storage before floor levels are ii. threatened?

This information is not available. Flood level information is available in the stormwater modelling report.

iii. How many Stormwater pumps have back-up generators or provision for nonelectric pumping? Back up plans?

The following stormwater pumpstations have provision for nonelectric pumping: McAlister Street (1301), Riverside Drive (1302), Barry Avenue (1303), St Josephs (1306), Amber Grove (1309), Gateway (1310), Karaka Lane (1313), Hub 1 (1315), Hub 2 (1316), Douglas Street (1319), Awatapu lagoon (1321), rose garden (1307), Awatapu reserve (1308), Hinemoa Street (1311), Karaka Lane (1304), and Marchignal Street (1314).

The following stormwater pumpstations do not have provision for nonelectric pumping: Halberg Crescent (1305), James Street (1312).

What kind of rain event can be catered for with gravity outfalls only, and for no pumps and no iv. gravity outfalls?

This information is not available. As noted on page 8 of the Whakatāne Urban Stormwater Modelling report, "[s]ome gravity outfalls with flap valves allow discharge to the Whakatāne River when levels are low, but many of the catchments have pump stations that discharge through the stopbank to artificially drain the catchments." One of the assumptions of the hydraulic model, as noted on page 47 of the report, was "[p]umps were assumed to be operational for the entire storm period and with discharge based on pump curves and estimated system losses."

1) The promotion of soakage is appropriate however the soakage rates given in Figure 4 of some of the quoted soakage rates may be possible under dry conditions for short durations, they are not appropriate for designing for soakage under saturated conditions and longer durations. These soakage rates should be reviewed and amended to reflect realistic soakage rates for longer duration storage/soakage mitigation for new builds.

The soakage rates were determined following a standard process. Site specific soakage tests will be required as deemed necessary for future development. The soakage rates reported are based on tests carried out in 2011 to categorise areas in Whakatāne that had good, moderate, or poor soakage rates. The tests were carried out in accordance with Section E1 of the NZ Building Code.

Please refer to the attached results of soakage tests carried out by MTEC Consultants in 2011.

m) Please comment on whether there will be a requirement for new builds to mitigate up to RCP 8.5, 1% 72-hour event, and if so, what will be the mechanism? (e.g., District Plan/ECOP).

This is not a current requirement for brownfield development. The mitigation requirement for new greenfield development will be determined on a case-by-case basis as part of consenting.

n) Please provide more comment around the 10% AEP current level of service of the pipe network system (current and future climate). Please address whether you think this level of service is feasible and whether a 20% AEP would be more realistic.

The Council's design standard is a 1 in 10 year AEP event. As the modelling shows, in many instances, this is not achieved in brownfield development. This design standard remains and is used for greenfield developments.

o) Please provide information on the condition of all the existing stormwater outlets, including photographs.

As agreed with Bay of Plenty Regional Council, this will be included as a condition of consent requiring a one off report within 12 months of the consent being granted.

p) The soakage system around the Whakatane Pool is inundated in small events. Are there any plans for remediation or investigation?

From time to time, the soakage system around the Whakatāne Aquatic and Fitness Centre is overwhelmed, with relatively short lived, minor ponding as a result. There are no immediate plans to upgrade the stormwater system in this area but it will be considered as part of any future upgrade in this carpark.

Yours sincerely

utipinson

Astrid Hutchinson **Project Planner**

Attachments:

- 1. Whakatāne District Council stormwater investment framework
- 2. Soakage test results
- 3. Memo from Keith Hamill of River Lake Limited dated 7 November 2023
- Revised Whakatane Comprehensive Stormwater Consent Monitoring Plan. 4.

Whakatāne District Council stormwater investment framework

					INVESTMENT DRIVER				
CRITERIA	Primary system has adequate capacity (inlets, pipes, channels, pumping stations)	Primary system has adequate system has adequate capacity Flood protection of Assets renewed or Resilience of the storm (inlets, pipes, habitable properties replaced when required water system stations) stations stations stations		Planning/Regulatory/Consenting needs are met	Preservation or enhancement of water quality and/or environmental parameters	Optimistic advantages (e.g. linking with roading project work)	Preservation of social and cultural values	Climate change	
Evaluation method (How to assess)	1D Modelling	1D/2D Modelling and RiskScape	ССТV	Risk assessment	Resource consents/Policy statements	Water quality/ecological results	Cost advantages are sought from integration with other projects	Feedback from community groups	Decisions are assessed against Council's seven Climate change principles
Evidence to invest (What are we testing?)	Components do not meet current or future (climate adjustments) needs	Habitable and commercial properties are at risk during the design 1% AEP flood	Age, condition, criticality	Risks (current and future) are unacceptable	Consent conditions are not met, or unlikely to be met in the future	Poor management of storm water that is not consistent with expectations of a well- designed modern storm water system	Advantages to invest early are compared with costs to upgrade at a later date	Sounds opportunities are available to meet community group aspirations	Components of the stormwater system are not compatible with effects based on likely climate change predictions
Target (What are we trying to achieve?)	Built infrastructure meets acceptable standards (e.g. Engineering Code of Practice)	Properties are protected from flooding for the 1% flood event but recognises that the level of investment needs to be affordable and satisfies economic scrutiny.	Assets are replaced/renewed in accordance with asset management best practice	Where practicable, the storm water systems is safe to fail, as opposed to fail safe	No non-compliances with resource consent conditions	Opportunities to improve storm water quality are identified and actioned as appropriate	Council maximises investment opportunities to take advantage of efficient infrastructure upgrades	Needs are satisfied and acted on as appropriate	Investments and decisions are required to ensure that the storm water system is future proofed to the effects of climate change
Community outcome (What benefit will the community realise?)	Frequent rain events is well managed. Nuisance ponding of storm water is avoided	A storm water system that aims to safeguard properties from flooding, considering economic constraints.	Asset deterioration is well managed so that assets are renewed at the right time and in the right places	The storm water system has in built resilience and safeguards in place to minimise the public's exposure should something not work as expected	Storm water systems operates under good environment controls.	Improved use of storm water as a resource that enhances aesthetic and amenity values.	Efficient use of stormwater funds	Community expectations are met	The systems is designed with effects of climate change in mind

Client: Whakatane District Council Project Title: Percolation Tests Page 10 Site Address: Marchignal Street Reserve No of Pages 16 Coastlands Test 10 of 16 City: Whakatane Date 18/05/2011 File Number: 614914-M-E-S001 By RGS CONSULTANTS

TGA REV 2 9/07/2010

Local People. Global Knowledge.

Stormwater Disposal - Percolation Test Results

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

					18/_1						
Time	Level Drop	Cumulative		0 -	vvat			us am	C		
(minutes)	(mm)	(mm)		-200 -							
0	0	0		-400 -							
1	-750	-750									
2	-350	-1100		jo () - 800 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -				_			
3	-100	-1200		a j -1200							
				[™] -1400 -	ł	-1				ime (mir	<u>ו וי</u>
				0	0.5	1	1.5	2	2.5	3	3.5
				0.00m	TOPSOIL, S	Silty SA	ND, ver	y moist			
				••• •••	SAND mediu	um, gre	ey, unifo	rmly gi	raded, mo	oist.	
Augered Hol Presoak hole End test hole Auger Diame Water level o Av test depth Depth of top Permeable D modified Hol Water Volum Hole Surface Total time of	le depth (1) e depth (2) e depth (3) eter drop n (2+3)/2 soil Depth (av - top le Diameter ne Lost e Area i test	1800 1700 1200 1200 1450 200 1250 111 11.7 0.24 3	mm mm mm mm mm mm litres m ² min	 	Becomes sa	aturated	d, boreho	ble colla	apsing.		
			perme	when time able depth is	0 to 1250 to	; ;	3]min 0 mm			
			S	urface area is			0.24	4 m ²			
Soakage rat	te	16.44	litres/m	n²/min							
Notes:	Moved locato	n to low point in rea	serve.								

Client:		Whakatane Distri	ct Cour	ncil	
Project	Title:	Percolation Tests			Page 11
Site Add	dress:	Paterson Street F	Reserve)	No of Pages 16
					Test 11 of 16
City:		Whakatane			Date 19/05/2011
File Nun	nber:	614914-M-E-S00	1		
			-		TGA REV 2 9/07/2010 CONSULTANTS
Storm	water Dispo	osal - Percolati	ion Te	est Results	Local People. Global Knowledge.
Notes:	Tests carried NZ Building C	out in accordance Code	with Se	ection E1 of th	ne
					Water level versus time
Time	Level Drop	Cumulative		^م ۵	
(minutes)	(mm)	(mm)		-100 +	
0	0	0		<u></u> −200 +	
30	-100	-100			
60	-100	-200			
90	-100	-300		a E -500 +	
120	-100	-400		↓ ⁻ ⁻ ⁻ -600 ↓	Time (min)
150	-35	-435		0	50 100 150 200 250 300
180	-40	-475			
210	-40	-515		0.00m	
240	-25	-540			TOPSOIL, moist.
				0.20m	
				+++	SILT, brown mottled grey & pale brown, plastic,
				+++	very moist - wet.
				+ + + 0.50m	
					Clayey SILT, pale brown mottled pale grey & pale
] + + +	brown, plastic, becomes saturated.
				+++	
				+++ 1.00m	
					Clayey SILT pale brown streaked pale grey & dark
					orange, wet - saturated.
A	1			+ + + 1.40m	
Augered Ho	ble depth (1)	3000	mm		
Presoak noi	le depth (2)	650	mm		
End test hol	e depth (3)	650	mm		
Auger Diam	leter	100	mm		
vvater level	arop	540	mm		
Av test dept	in (2+3)/2	650	mm	+ + + 2.50m	
Depth of top	DSOII Danth (ann tan	200	mm		SILI, pale green, non plastic, wet - saturated.
Permeable	Deptn (av - top	245U	mm		
moaified Ho		215	mm		
	He LOST	19.6	11(FES 2		
Hole Surfac	e Area	0.19	m-	+ + + 3.00m	
i otal time o	t test	240	min	E.O.B.	
			·	wnen time	e u to <u>240</u> min
			perme	eable depth is	45U to 0 mm
			5	surface area is	s 0.19 m ²
Soakage ra	te	0.43	litres/n	n ⁻ /min	
N1 - 4 -					
Notes:					

Client:		whakatane Distri						
Project T	ïtle:	Percolation Tests			Page	12		
Site Addı	ress:	Farnworth Street	Reserv	'e	No of Pages	16		
					Test	12 of 16		
City:		Whakatane			Date	19/05/2011		
File Num	ber:	614914-M-E-S00	1		By	RGS		
Stormy	vater Dispo	osal - Percolati	on Te	est Results	TGA RE	V 2 9/07/2010	CONS Local Peop	e. Global Knowledg
Notes:	Tests carried NZ Building C	out in accordance ode	with S	ection E1 of th	e			
					Water	level versus	time	
Time	Level Drop	Cumulative		⁰ ۲				<u> </u>
(minutes)	(mm)	(mm)		-50 +				
0	0	0		_ 2 -100 +				
5	-20	-20						
30	-25	-45						
60	-25	-70		a <u>1</u> -200 +				
90	-25	-95		° -250 ↓		+ ;		
120	-20	-120		0	50	100 150	200	250 30
150	-20	-145						·
180	-25	-170		0.00m				
210	-25	-195			TOPSOIL.			
240	-25	-220		0.20m			n anna an Orada	
					SILI, pale bro	wn mottled paie	e grey & da	ark orange, nor
					conesive, slign	itiy plastic,mois	it.	
					Bacomos SILT	' nalo brown ei	roakod na	lo arov & dork
				+ + + + + + 1.00m	orange, non pl	, pale brown si astic, moist.	reakeu pa	le grey & dark
					Becomes SILI	brown streake	o dark ora	nge, siigniiy
					plastic, moist r	ecomes very n	noist - wet.	
A		0000		+++ + 1.80m	OU T	_1	J	
Augerea Hole Presoak hole	e depth (1)	2000	mm		SIL1 occasion	ai medium san ed	a, pale gre	en, non
End tost hole	dopth(2)	2000			Ground water			
Enu test noie	tor	2000	mm	▼ 2.00m	Ground water	level.		
Nater level d	lron	220	mm	E.U.B.				
Av test denth	10p	220	mm					
Ry lest depth	1 (2+3)/2 Soil	2000	mm					
Depin or lops Parmashla D	onth (av - ton	1800	mm					
modified Hold	a Diameter	1000 ×	mm					
Water Volum	e l net	17	litree					
		0.54	m ²					
Total time of	tost	0.04	min					
i otar time Ul	1531	240	11111					
				when time		240	min	
			nerma	ahle denth is	1800 to	1580	mm	
			heuns			0.001	m^2	
Daaless			5 4	area Is	i	0.54	11	
boakage rate	e	0.01	utres/r	n / min				
			_					
Notes:	Water level dr	rop at 23 hours 450)mm, v	ater level dro	p at 120 hours	730mm.		

.....

·····

Client: Whakatane District Council Project Title: **Percolation Tests** Page 13 Site Address: Reserve Adjacent Pump Station No of Pages 16 Awatapu Drive Whakatane South Test 13 of 16 City: Whakatane Date 19/05/2011 File Number: 614914-M-E-S001 By RGS

TGA R

Stormwater Disposal - Percolation Test Results

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

					,	Wa	tor lo		suc tim	•		
Time	Level Drop	Cumulative		0~		AA GI		vei veit	รนอ แเก	C		
(minutes)	(mm)	(mm)		-100 +								
0	0	0		-200 +								
15	-150	-150		E -400 -		\searrow						
22	-130	-280										
30	-120	-400		-700 -								:
38	-100	-500		° -800 –			-+	{	· · ·	•	time (m	<u>m) </u>
40 60	-20	-520		0	20		40	60	80	100	120	140
75	-40	-650		0.00m								
90	-30	-680			TOPSO	ML S	andv	SILT				
120	-30	-710		0.20m			unuy	0121.				
					Medium	ı - fir	ne Sar	ndy SILT	, brown	, non pla	astic, ver	v
					moist.			2		•	•	
				+++ 0.50m								
				+++	Medium	ı - fir	ne Sar	ndy SiLT	, pale b	rown ma	ottled dar	ĸ
					orange	& pa	ale gre	ey, non p	lastic - s	slightly p	olastic, ve	ery
				<u>+++</u> 0.70m	moist be	econ	nes sa	aturated.				
				▼ 0.75m	Medium	wau h_fir	er leve 10 Sar	ei. nd brow	n mottle	d dark o	range	
				1.00m	saturate	ed		iu, biow	mone	u uaik u	nange,	
				• • •	outurate	. vu						
							•					
				• • • 1.30m	Boreho	ole c	ollaps	sing.				
Augered Ho	le depth (1)	1300	mm	E.O.B.								
Presoak hol	e depth (2)	750	mm									
End test hole	e depth (3)	750	mm									
Auger Diam	eter	100	mm									
vvater level	arop	710	mm									
Av test dept	n (2+3)/2	750	mm									
Permeable [Denth (av - ton	550	mm									
modified Ho	le Diameter	. 000	mm									
Water Volun	ne Lost	9.7	litres									
Hole Surface	e Area	0.13	m²									
Total time of	ftest	120	min									
1												
1				when time	0	to		120	min			
			perme	eable depth is	550	to	I		0 mm			
			S	urface area is				0.1	13 m ⁻			
Soakage ra	te	0.63	litres/n	n ⁻ /min								
Notes						-						
10103.												

Client:	Whakatane District Council		
Project Title:	Percolation Tests	Page 14	
Site Address:	Fishermans Drive Reserve	No of Pages 16	
	Coastlands	<i>Test</i> 14 of 16	
City:	Whakatane	Date 20/05/2011	
File Number:	614914-M-E-S001	By RGS	▁▎ヾ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚
		TGA REV 2 9/07/2010	CONSULTANTS

TGA REV 2 9/07/2010

Local People. Global Knowledge.

Stormwater Disposal - Percolation Test Results

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

Water level versus time . Time Cumulative Level Drop 0 -100 (minutes) (mm) (mm) 0 0 -200 0 surface (mm) 1 -150 -150 Level form -300 2 -110 -260 -400 3 -50 -310 -500 Time (min) 4 -50 -360 -600 5 -40 -400 50 60 0 10 20 30 40 70 6 -20 -420 7 -20 -440 0.00m 8 -20 -460 0.00m 9 0 -460 TOPSOIL, Silty SAND, moist. 0.10m 15 -20 -480 SAND medium - fine, brown, poorly graded graded, 30 -20 -500 moist. 0.20m 45 -500 SAND medium, grey, uniformly graded, becomes 0 60 0 -500 saturated. 0.60m Ground water level. Borehole collapsing. 1.00m E.O.B. Augered Hole depth (1) 000 mm Presoak hole depth (2) 600 mm End test hole depth (3) 600 mm Auger Diameter 100 mm Water level drop 500 mm Av test depth (2+3)/2 600 mm Depth of topsoil 100 mm Permeable Depth (av - top: 500 mm modified Hole Diameter 129 mm Water Volume Lost 6.5 litres m² Hole Surface Area 0.11 Total time of test 60 min when time 0 to 60 min permeable depth is 500 0 mm to 0.11 m^2 surface area is 0.95 litres/m²/min Soakage rate Notes:

Client:	Whakatane District Council		
Project Title:	Percolation Tests	Page 15	
Site Address:	Road Reserve Corner Olympic Drive	No of Pages 16	
	& King Street	Test 15 of 16	
City:	Whakatane	Date 20/05/2011	
File Number:	614914-M-E-S001	By RGS	
		TGA REV 2 9/07/2010	CONSULTANTS Local People. Global Knowledge.

Stormwater Disposal - Percolation Test Results

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

4

					Wate	er level	versus t	ime		
Time	Level Drop	Cumulative		0 7						
(minutes)	(mm)	(mm)		-200 +	\backslash					
0	0	0		400 -	\mathbf{X}					
2	-50	-50								
4	-50	-100				_				
6	-40	-140		- 008- <u>3</u> 8						
10	-60	-200		ਡ ₋₁₀₀₀					Time (m	i n)
18	-140	-340		0	50	100	150	200	250	300
28	-90	-430]
42	-100	-530		0.00m						
57	-100	-630			TOPSOIL.					
77	-70	-700		0.20m						
97	-40	-740		+++	SILT minor m	nedium -	fine Sand	l, pale bro	own mottle	ed
120	-28	-768		+++	dark brown, r	moist be	comes ve	ry moist.		
150	-28	-796		+++ + 0.50m						
180	-28	-824		+++	Medium - fine	e Sandy	SILT, pa	le brown,	slightly pla	astic,
210	-28	-852		+++	very moist be	ecomes	wet.			
240	-28	-880		+ + + 0.80m	Medium - fine	e SAND	with Silt, p	bale brow	n, poorly g	graded,
				• • •	saturated.					
				• • • 1.00m	Medium - fine	e Sandy	SILT, pa	le brown,	slightly pla	astic,
				+ + +	very moist be	ecomes	wet.			
				+++						
				+++ + 1.30m	Becomes sat	turated, l	borehole o	collapsing	-	
				E.O.B.						
Augered Ho	le depth (1)	1300	mm							
Presoak hole	e depth (2)	1000	mm							
End test hole	e depth (3)	1000	mm							
Auger Diam	eter	100	mm							
Water level	drop	880	mm							
Av test dept	n (2+3)/2	1000	mm							
Depth of top	soil	200	mm							
Permeable I	Depth (av - top	800	mm							
modified Hol	le Diameter	114	mm							
Water Volun	ne Lost	9.0	litres							
Hole Surface	e Area	0.15	m"							
Total time of	test	240	min							
			perme	when time able depth is urface area is	0 to 800 to	2	40 m 0 m 0.15 m	in m 2		
Soakage rat	te	0.24	itres/m	n⁻/min						
Notos										
inoles:										

<u>3</u>			
Client:	Whakatane District Council		
Project Title:	Percolation Tests	Page 16	
Site Address:	Road Reserve Corner Valley Road	No of Pages 16	
	& Arawa Road	Test 16 of 16	
City:	Whakatane	Date 25/05/2011	
File Number:	614914-M-E-S001	By RGS	▁ऻヽン/▐▎▋▎▃▙▀ᠫ▁
Charmonetan Di		TGA REV 2 9/07/2010	CONSULTANTS Local People. Global Knowledge.

Stormwater Disposal - Percolation Test Results

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

(5)

						Wate	er level	versus	time		
Time	Level Drop	Cumulative		0 ∧		_					
(minutes)	(mm)	(mm)		-50 -	\backslash						
0	0	0				_					
10	-50	-50									
60	-00	-140							-		
100	-40	-180		ej L -250 +						Time (m	in)
120	-20	-200		-300 +	50))	100	150	200	250	300
150	-20	-220					100	100			
180	-20	-240		0.00m							
210	-20	-260		+++	Intermix	ked T(OPSOIL	. & SILT, o	occasiona	al subround	ded
240	-10	-270		+++	medium	ı grav	el, sligh	tly plastic	very moi:	st - wet.	
				0.40m	Rising g	groun	d water	level.			
1				++++ 0.50m		inor n	odium.	fino Son	d nalo arc	w etrookov	4
					dark or		von me	viet wet	u pale gre	by Sileaner	4
					ualk Ula	ange,	very mo	JISL - WEL			
				++++ 1.00m							
				E.O.B.							
Augorod Ho	lo dooth (1)	1000	mm								
Presoak ho	le depth (2)	400	mm								
End test hol	le depth (3)	400	mm								
Auger Diam	eter	100	mm								
Water level	drop	270	mm								
Av test dept	th (2+3)/2	400	mm								
Depth of top	osoil	0	mm								
Permeable	Depth (av - top	400	mm								
Motor Volur	ne Diameter	108	litros								
Hole Surfac		0.15	m^2								
Total time o	f test	240	min								
	1 1001	240	11111								
				when time	0	to	2	40 m	nin		
			perme	able depth is	400	to		130 m	nm		
			S	urface area is				0.15 m	1 ²		
Soakage ra	ite	0.15	litres/n	າ²/min							
	D							_			
Notes:	Rising ground	water level initially	y groun	d water 800m	m the fi	nishe	ed at 40	0mm.			
	woved locatio	in to low point on r	bad res	erve.							
1											

MTEC CONSULTANTS LTD

Percolation Test Results

Job Name: Site Address: Job Number: Date: 17.11.05 156 A & B and 158 James Street, Whakatane By: M.C 126047

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

. . .

Percolation Test Results

Job Name:		Date:	7.9.05
Site Address:	96 Domain Rd Whakatane	By:	MC
Job Number:	125458		

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

Test No. 1

ì

ì

Time	Level Drop	Cumulative	
1		Level Drop	
(minutes)	(mm)	(mm)	
0	0	0	İ
5	-380	-380	
10	-80	-460	
15	-70	-530	
20	-50	-580	
25	-60	-640	
30	-60	-700	
35	-60	-760	
40	-80	-840	
45	-80	-920	
50	-70	-990	
55	-80	-1070	
60	-60	-1130	

Hole depth	1130	mm					
Water level drop	1130	mm					
Permeable Depth	1130	mm					
Average Hole Diameter	115	mm					
Water Volume Lost	11.7	litres					
Average Surface Area	0.21	m²					
Total time of test	60	min		when time	0	to	60 min
_		ومعرضين والمعر	. F	permeable depth is	1130	to	0 mm
		::::-::-:	- S	surface area is			0.21 m ²
Soakage rate	(0.91 li	tres/m ²	/min 🎽				
	and the second s	×					

MTEC CONSULTANTS LTD

Borehole Log

Job Name: Site Address: 96 DOMAIN RD Job Number: 125458 Date: By: 7/09/2005 M.C

Notes: Depth of borehole begins at the existing ground level

slightly moist

slighly moist

BOREHOLE 1

EOB

ł

SAND, brown, Slightly moist

SAND, rare silt , some gravel, frequent root hares

SAND, rare silt and minor organic content, dark brown/ black

MTEC CONSULTANTS LTD

Percolation Test Results

Job Name: Site Address: Job Number:	61 Pohutu Street, Whakatane 126055-W-E-S001	Date: By:	10.11.05 CJS
JOD Humber			

Notes: Tests carried out in accordance with Section E1 of the NZ Building Code

Test No. 1

Time	Level Drop	Cumulative
f		Level Drop
(minutes)	(mm)	(mm)
0	0	0
1	-130	-130
2	-10	-140
3	-10	-150
4	0	-150
5	-20	-170
6	-10	-180
7	-10	-190
8	-10	-200
9	-5	-205
10	-10	-215
11	-5	-220
12	-10	-230
13	0	-230
14	-10	-240
15	-10	-250
16	-10	-260
17	0	-260
18	-10	-270
19	-10	-280
20	-10	-290
21	-10	-300
22	0	-300
23	-10	-310
24	0	-310
25	0	-310
26	-10	-320
27	-10	-330
28	0	-330
29	-10	-340
30	-10	-350
		1200
Hole depth	-	350
vvater level	arop	1200
Permeable [Jepth	1000

	Water leve	el versus tir	ne	
0 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			Time	(min)
-400 <u> </u>	10	20	30	40

when time	0	to	30 min
permeable depth is	1300	to	950 mm
surface area is			0.36 m ²

a construction of the second second second

.

Soakage rate

0.25 litres/m²/min

тт тт тт

mт

litres

m²

min

100

2.7

0,36

30

Average Hole Diameter

Average Surface Area

Water Volume Lost

Total time of test

	·				
Client:		Te Whare Wanar	nga o A	wanuiarangi	
Project	Title:	Office Developme	ent - Ex	Camelia	Page 2
		Court Motel			No of Pages 2
Site Add	dress:	11 Domain Road			
City:		Whakatane			Date 9/03/2011
File Nur	nber:	614738-M-E-S00	1		By RGS
					TGA REV 2 9/07/2010 CONSULTANTS
Storm	water Dispo	out in accordance	ion Te with Se	est Results	Local People, Global Knowledgo,
	NZ Building C	ode		· · · · · · · · · · · · · · · · · · ·	
Test No. 1				0 -	Water level versus time
Time	Level Drop	Cumulative		-200 -	t\
(minutes)	(mm)	<u>(mm)</u>		E -400 -	+ 🔪 👘 👘
	0	0		-600 -	
3	-300	-300		E -800	
15	-220	-520		あ - 1000 -	
30	-200	-920		e	Time (min)
42	-220	-1140			
				Ľ	
			Bor	e Hole 1 0.00m	
1					TOPSOIL
]					
		•		0.30m	
				• • •	Silly medium - fine SAND, brown, poorly graded,
					moist.
				•••	
				• • •	
					Resource inter Siller
					becomes less day.
Augered Hol	e depth (1)	2000	mm	• • • 1.00m	
Presoak hol	e depth (2)	1700	mm		
End test hole	e depth (3)	1650	mm	•••	
Auger Diame	eter	100	mm	•••	Medium - fine SAND, pale grey mottled pale orange
Water level	drop	1140	mm		brown, poorly graded, very moist becomes wel.
Av test depti	1 (2+3)/2	1675	mm	• • •	
Depth of top	SOIL Namth (ann Ionn	300	mm		
modified Hol	e Diamotor	13/5	mm		Becomes wet.
Water Volum	e Diametei	109	litros		
Holo Surface		0.20	m ²	•••	
Total time of	test	0.29	min	2,00m	
Totar and or	1001	74			FOR
				when time	∋ 0 to 42 min
			perme	eable depth is	13/5 to 235 mm
- .			5	urface area is	s 0.29 m²
Soakage rat	e	0.89	litres/n	n*/min	

Client: Project Title: Site Address: City: File Number: Stormwater Di Notes: Tests can NZ Buildir	Cnr Francis Street & Whakatane 134007-M-E-S001 sposal - Percolation ried out in accordance wit	Domain Road Test Results	Page No of Pages Date By TGA RE	2 4 17/09/2010 RGS/SMK 2 9/07/2010	CONSULTANTS Local People. Global Knowledge	
Time Level Dr (minutes) (mm) 0 0 1 -250 2 -50 4 -40 5 -60 7 -80 9 -60 11 -50 13 -50 15 -50 17 -60 19 -20 21 -40 23 -50 17 -60 19 -20 21 -40 23 -50 30 -50 35 -50 40 -50 35 -50 40 -50 55 -80 Augered Hole depth (1) Presoak hole depth (2) .hd test hole depth (2) .hd test hole depth (2) .hd test hole depth (2+3)/2 Depth of topsoil Permeable Depth (av - modified Hole Diameter <	op Cumulative (mm) 0 -250 -300 -340 -400 -480 -540 -590 -640 -690 -750 -770 -810 -860 -870 -920 -970 -1020 -1070 -1150 0 2100 m 1350 m 1350 m 1350 m 14.0 litr 0.18 m 55 m	0 -200 -400 -200 -400 -400 -9 -1000 -1200 -1400 0 -1400 0 0 30re Hole 1 0.00m 0 0.50m 0 0 0 </th <th>Vater 10 (FILL) TOPSO BURIED TOPS medium, greyis Silty SAND fine - morange & pale SAND fine - morange, poorly Ground Water E.O.B. 0 to 850 to</th> <th>20 30 DIL intermixed v SOIL Sandy SIL sh dark brown, p e - medium, bro grey, poorly gra edium, brownis graded, very m r Level T Level 1 0 n 0.18 m</th> <th>time Time (min) 40 50 60 with pale brown Silt. Tranged Silty SAND fine poorly graded, moist. which grey streaked dark aded, moist - very moist. sh pale grey streaked noist becomes saturated.</th> <th></th>	Vater 10 (FILL) TOPSO BURIED TOPS medium, greyis Silty SAND fine - morange & pale SAND fine - morange, poorly Ground Water E.O.B. 0 to 850 to	20 30 DIL intermixed v SOIL Sandy SIL sh dark brown, p e - medium, bro grey, poorly gra edium, brownis graded, very m r Level T Level 1 0 n 0.18 m	time Time (min) 40 50 60 with pale brown Silt. Tranged Silty SAND fine poorly graded, moist. which grey streaked dark aded, moist - very moist. sh pale grey streaked noist becomes saturated.	
Soakage rate	1.43 litre	s/m /min			·	

- -----

_ ___

.

.....

	SURVEYORS	JOB TITLE	1			PAGE	
	ENGINEERS	ADDRESS	24 Bracken Str	eet			
	PLANNERS		Whakatane	·			
CONSULTANTS	ROTORUA TE PUKE OPOTIKI MT MAUNGANUI WHAKATANE	JOB No.	131806	DATE	18/03/2008	BY	NB

Soakhole Capacity Spreadsheet

Flow Rate into soakhole =	1.40	l/s	
Soakge rate of soil =	2.40	l/m²/min	
Diameter of Hole =	0.900	m	
No Rings	3	Depth of Soak hole	1.35

Time	Water Depth	Surface area	Soakage	Storage	Water Depth
	start (m)	(wet) m ²	rate (l/s)	Rate (I/s)	finish (m)
0	0	0.636	0.0254	1.3715	0.129
1	0.129	1.002	0.0401	1.3568	0.257
2	0.257	1.363	0.0545	1.3424	0.384
3	0.384	1.721	0.0689	1.3280	0.509
4	0.509	2.075	0.0830	1.3139	0.633
5	0.633	2.426	0.0970	1.2999	0.756
6	0.756	2.772	0.1109	1.2860	0.877
7	0.877	3.115	0.1246	1.2723	0.997
8	0.997	3.455	0.1382	1.2587	1.116
9	1.116	3.790	0.1516	1.2453	1.234
10	1.234	4.122	0.1649	1.2320	1.350

The above calculation shows that the average flowrate into the design soakhole that can be sustained without overflow is : 1.397 litres per second

The maximum area to be reticulated to each soakhole is therefore calculated as follows:

Rainfall Intensity (10% AEP 10min) =	16	mm/10min
Rainfall Intensity (10% AEP 10min) =	96	mm/hour
C Value for Paved / Roof Areas =	0.90	
C Value for Grassed Areas =	0.3	
Max Paved / Roof Area per soakhole =	58	m²
Max Grassed Area per soakhole =	174	m²

.

	SURVEYORS	JOB TITLE				PAGE		
	ENGINEERS	ADDRESS	16 Louvain Street					
	PLANNERS		Whakatane					
TEC CONSULTANTS	ROTORUA TE PUKE OPOTIKI MT MAUNGANUI . WHAKATANE	JOB No.	130303	DATE	10/10/2008	BY	NB	

Soakage Trench For Front Carpark Area

Use 900 wide x 600 deep soakage trench

Flow Rate into trench =	0.49	l/s
Soakge rate of soil =	2.50	l/m²/min ↓ ←
Trench Length =	1.0	m
Trench Width =	0.90	m
Trench Porous Depth =	0.60	m
Trench Void Ratio =	0.5	

Time	Water Depth	Surface area	Soakage	Storage	Water Depth
	start (m)	(wet) m ²	rate (l/s)	Rate (I/s)	finish (m)
0	0	0.900	0.0375	0.4541	0.061
1	0.061	1.130	0.0471	0.4445	0.120
2	0.120	1.355	0.0565	0.4351	0.178
3	0.178	1.576	0.0657	0.4260	0.235
4	0.235	1.792	0.0747	0.4170	0.290
5	0.290	2.003	0.0835	0.4082	0.345
6	0.345	2.210	0.0921	0.3995	0.398
7	0.398	2.412	0.1005	0.3911	0.450
8	0.450	2.610	0.1088	0.3829	0.501
9	0.501	2.804	0.1168	0.3748	0.551
10	0.551	2.994	0.1248	0.3669	0.600

The above calculation shows that the average flowrate into the design soakhole that can be sustained without overflow is : 0.492 litres per second

The maximum area to be reticulated to each soakhole is therefore calculated as follows:

Rainfall Intensity (10% AEP 10min) = Rainfall Intensity (10% AEP 10min) ≍ C Value for Paved / Roof Areas = C Value for Grassed Areas =	16 96 0.90 0.3	mm/10min mm/hour
Max Paved / Roof Area per soakhole =	20	m²
Max Grassed Area per soakhole =	61	m²
Carpark Area =	26	2 m²
Trench Length Required =	1	3 m

.....

MTEC CONSULTANTS LTD

Client : Project : Site Address:

۳

ĩ

Site Address: 84 T File Number: 1280

84 Thornton Rd, Whakatane 128074-W-E-S001 Date: 12.10.06 By: MC

Notes:

Tests carried out in accordance with Section E1 of the NZ Building Code

Test No. 1

				-
	Time	Level Drop	Cumulative	
			Level Drop	
	(minutes)	(mm)	(mm)	
	0	0	0	
	1	-200	-200	
	2	-200	-400	
	3	-100	-500	
I	4	-40	-540	
	5	-30	-570	
	6	-20	-590	
I	7	-30	-620	
1	8	-20	-640	ĺ
Į	9	-20	-660	ļ
	10	-10	-670	
I	11	-10	-680	
	12	-10	-690	
ł	13	-10	-700	
	14	-10	-710	
I	15	-10	-720	1
I				
ł				
I				
I				
L				
Ľ	Augered Hol	e depth (1)	900	mm
Ľ	Presoak hole	e depth (2)	900	mm
Ľ	Ind test hole	e depth (3)		mm
ľ	Auger Diame	eter į	100	mm
Ľ	Nater level c	frop	720	mm
ľ	Av test depth	I (2+3)/2	900	mm
	Depth of tops	soil	300	mm
F	Permeable D	epth (av - top:	600	mm
r	nodified Hole	e Diameter	100	mm
۷	Vater Volum	e Lost	5.7	litres
ŀ	lole Surface	Area	0.10	m²
Ĩ	otal time of	test	15	min
ĺ				
ĺ				perm
_			_	
S	ioakage rate	9	3.69	litres/

.

	g	eo	lab	CLIENT:	N Kenny & S	N Kenny & S Schroder					BOREHOLE No: P1			
	air, labo	soil & pratory	& water services	PROJECT:	PROJECT: New 2 Lot Subdivision, 16 Kowhai Street, Whakatane					Sheet 1 of 2				
Dri Dri Da Da	ill Type: illed By: ite Starte ite Finish	Ha: SW ed: 4/1 ned: 4/1	nd Auger / & SG 1/09 1/09	Pi C G W	Project No: 1730-128945-01 Logged E Coordinates: Checked Ground Elevation: Shear Va Water Level:					GR				
GROUND WATER	G DEPTH (m)	GRAPHIC LOG		SOIL DESCRIPTION MAIN/minor components, strength, colour structure, weathering				NATUR LIQUID PLASTI SHEAR REMOL POCKE	AL WATER LIMIT C LIMIT 50 10 STRENGT JLDED SHE T PENETR 50 10	CONTENT DD 11 H EAR OMETER D0 11	50 (%) 0 v 0 r 0 p 50 (kPa)	LABORATORY TESTS		
0/11/0			Light brown Lighter colo Fine particu SAND (fg-m CLAY. Incre present.	CLAY, low moi ur, increasing s lates.	sture.	ightly more damp	0, 0, 1. ent 1.							
KENNY GPJ GEOLAB.GDT	2.0		Sandy GRA	VEL			2.							

-

-

HARRISON	GRIE	RSON	CONSULTANTS LTD				HG	File No	1730-128945-01	
PERCOLATION	FEST RES	ULT SHEE	т						Date	4-Nov-09
Project Name:	16 Kowha	i Street, W	hakatane						Initials	SW/SG
Test No:	1	Depth of h	ole (mm):	2000		Diameter:	150mm		L	
Actual time	Down to	Diff time	Drop in	Head	Perc rate		graph	ical infor	mation	
hh:mm:ss)	<u> WL (mm)</u>	(min)	WL (<u>m</u> m)	(mm)	(<u>mm/hr)</u>	Head	Y1 (Perc)	<u>Y2</u>	Y3	Y4
Soak Hole 1										
0:00:00	0			2000		2000				
0:01:00	25	1.0	25	1975	1500	1975	1500			
0:02:00	70	1.0	45	1930	2700	1930	2700			
0:03:00	110	1.0	40	1890	2400	1890	2400			
0:04:00	160	1.0	50	1840	3000	1840	3000			
0:05:00	200	1.0	40	1800	2400	1800	2400			
0:06:00	240	1.0	40	1760	2400	1760	2400			
0:07:00	280	1.0	40	1720	2400	1720	2400		<u> </u>	·
0:08:00	320	1.0	40	1680	2400	1680	2400			
0:09:00	360	1.0	40	 1640	2400	1640	2400			<u> </u>
0:10:00	390	1.0	30	1610	1800	1610	1800			· ·
0:15:00	550	5.0	160	1450	1920	1450	1920		<u> </u>	
0:20:00	660	5.0	110	1340	1320	1340	1320		<u> </u>	
0:25:00	750	5.0	90	1250	1080	1250	1080			
0:30:00	820	5.0	70	1180	840	1180	840		1	
0:35:00	900	5.0	80	1100	960	1100	960			
0:40:00	960	5.0	60	1040	720	1040	720			
0:45:00	1000	5.0	40	1000	480	1000	480			
0:50:00	1030	5.0	30	970	360	970	360	··		
0:55:00	1055	5.0	25	945	300	945	300		<u> </u>	· · · · · · · · · · · · · · · · · · ·
1:00:00	1075	5.0	20	925	240	925	240		1	
	· · · · ·		<u> </u>							
	 					<u>†</u> ·	<u> ·· −</u> −−			
<u> </u>	})		<u> </u>					l

.

16 Kowhai Street, Whakatane Soak Hole Test 1 Head

	g	eo	lab	CLIENT: N Kenny & S Schroder	BORE	BOREHOLE No: P2				
air, soil & water laboratory services				PROJECT: New 2 Lot Subdivision, Whakatane	16 Kowhai Stree	et,	Sheet	Sheet 1 of 2		
Dri Dri Da Da	ill Type: illed By: ite Starte ite Finish	Har SW :d: 4/11 :ed: 4/11	nd Auger & SG 1/09 1/09	Project No: 1730-128945 Coordinates: Ground Elevation: Water Levet:	.01	Logged Checked Shear V	By: d By: ane No:	GR		
BROUND WATER	DEPTH (m)	GRAPHIC LOG		SOIL DESCRIPTION MAIN/minor components, strength, colour structure, weathering	DEPTH /m/	NATUR LIQUID PLASTI SHEAR REMOL POCKE	AL WATER CC LIMIT IC LIMIT 50 100 CSTRENGTH JLDED SHEAR ET PENETROM	2007ENT 2 2007 200 200	LABORATORY TESTS	
Ĕ	0.0	<u>x 14</u> x <u>1</u> /2	TOPSOIL.			. <u>o </u>	50 100	150 (kP)	a)	
	-		Light brown	CLAY, low moisture.				· · · · · · · · · · · · · · · · · · ·		
	<u>0.5</u>	0.5 Lighter co		ur, increasing sand content. Slightly more ates.	e damp.					
	<u>–</u> <u>1.0</u>		SAND (fg-rr	g).		LO			·	
	-		CLAY. Incre	asing moisture content.						
10/11/08										
OUL KENNY GPJ GEOLAB GOI			Wet brown-	pray CLAY.		2.0				

.

.

HARRISON	GRIE	RSON	CONSULTANTS LTD				HG	File No	1730-128945-01	
PERCOLATION 1	EST RES	ULT SHEE	τ	÷	,				Date	4-Nov-09
Project Name:	16 Kowha	i Street, W	hakatane						Initials	SW/SG
Test No:	2	Depth of h	ole (mm):	2100		Diameter:	150mm		<u> </u>	
Actual time	Down to	Diff time	Drop in	Head	Perc rate		graph	ical infor	nation	i
(hh:mm:ss)	<u>WL (mm)</u>	<u>(min)</u>	<u>_WL (mm)</u>	(<u>m</u> m)	(mm/hr)	Head	Y1 (Perc)	<u>Y2</u>	<u>Y3</u>	Y4Y4
Soak Hole 1										
0:00:00	0			2100		2100				
0:01:00	120	1.0	120	1980	7200	1980	7200			
0:02:00	260	1.0	140	1840	8400	1840	8400			
0:03:00	400	1.0	140	1700	8400	1700	8400			
0:04:00	490	1.0	90	1610	5400	1610	5400			
0:05:00	580	1.0	90	1520	5400	1520	5400			
0:06:00	640	1.0	60	1460	3600	1460	3600			
0:07:00	700	1.0	60	1400	3600	1400	3600			
0:08:00	760	1.0	60	1340	3600	1340	3600			
0:09:00	820	1.0	60	1280	3600	1280	3600	<u> </u>		
0:10:00	850	1.0	30	1250	1800	1250	1800	·	<u>├</u>	
0:15:00	1000	5.0	150	1100	1800	1100	1800			
0:20:00	1090	5.0	90	1010	1080	1010	1080		<u> </u>	
0:25:00	1150	5.0	60	950	720	950	720			
0:30:00	1200	5.0	50	900	600	900	600		<u> </u>	
0:35:00	1240	5.0	40	860	480	860	480			
0:40:00	1280	5.0	40	820	480	820	480		<u> </u>	
0:45:00	1330	5.0	50	770	600	770	600		<u> </u>	
0:50:00	1360	5.0	30	740	360	740	360			
0:55:00	1385	5.0	25	715	300	715	300			
1.00.00	1405	5 0	20	695		, <u>605</u>	240			
1.00.00	1403	5.0					240			
				·						<u> </u>
l	}		۱ <u> </u>]					

į

٠

,

16 Kowhai Street, Whakatane Soak Hole Test 2 Head

•••

550× ·

	Harrison Grierson Consultants Limited 22 Louvain Street, Whakatane, Bay of Plenty
ale 1:10	Title: F K Developments Limited
; :	Date: Friday, 28 March 2008
ge No.:	Project: 21 Bridge Street, Whakatane

P2 (By House) 1 0.9 0.8 0.7 Depth (m) 0.6 0.5 0.4 0.3 10~~ / 10~~~. 0.2 1 60m 0.1 0 20 60 80 100 120 40 0 Time (Mins)

- Soch miss. - 10%

HARRISO	N GRIE	RSON	CONS	ULTA	NTS LT	D		HG	File No	1730-129
PERCOLATION	TEST RES	ULT SHEE	r I	<u></u>	· · · · · · · · · · · · · · · · · · ·			, <u>, , , , , , , , , , , , , , , , , , </u>	Date	3-Feb
Project Name:	HTM Hold	ings Ltd			Location :	112 James	St, Whaka	tane	Initials	SJC
Test No:	1	Depth of h	ole (mm):	1360		Diameter:	80mm	!	ļ	<u> </u>
Actual time	Down to	Diff time	Drop in	Head	Perc rate		graph	ical infor	mation	
(hh:mm:ss)	<u> WL (mm)</u>	(min)	WL (mm) 	(<u>mm)</u>	(<u>mm/hr)</u>	l <u>Head</u>	Y1 (Perc)	<u>Y2</u>	<u>Y3</u>	<u> Y4</u>
Soak Hole 1	ļ				ļ			ļ	ļ	ļ
0:00:00	0			1360		1360	 			
0:00:30	60	0.5	60	1300	7200	1300	7200			
0:01:00	90	0.5	30	1270	3600	1270	3600			
0:02:00	140	1.0	50	1220	3000	1220	3000			
0:03:00	180	1.0	40	1180	2400	1180	2400			
0:04:00	220	1.0	40	1140	2400	1140	2400			
0:05:00	260	1.0	40	1100	2400	1100	2400			
0:06:00	290	1.0	30	1070	1800	1070	1800	<u> </u>		
0:07:00	300	1.0	10	1060	600	1060	600			
0:08:00	320	1.0	20	1040	1200	1040	1200	-	1	
0:09:00	340	1.0	20	1020	1200	1020	1200		+	
0:10:00	360	2.0	40	1000	1200	1000	1200	<u>+</u>		+
0:15:00	430	5.0	70	930	840	930	840	+		·
0:20:00	480	5.0	50	880	600	880	600		+	
0:30:00	530	10.0	50	830	300	830	300	-		
0:40:00	560	10.0	30	800	180	800	180	1		
1:00:00	580	20.0	20	780	60	780	60	1		
1:15:00	600	15.0	20	760	80	760	80		1	1
1:35:00	610	20.0	10	750	30	750	30			
3:30:00	650	115.0	40	710	21	710	21	T		
Collapsed hole]]		
·]
	<u> </u>	+			†	<u> </u>	†	<u>+-</u>	<u></u>	
	ţ		· · · · · · · · · · · · · · · · · · ·		·+···				+	-
·						 				- {
					<u> </u>		··· ·	+		
	j					÷				

مير مر

`

		S. 8.	
g air,	soil & v	ab CLIENT: HTM Holdings Ltd water PROJECT: , 112 James Street, Whakatane rvices Provident Street, Whakatane	BOREHOLE No: HA1 Sheet 1 of 1
Drill Type: Drilled By: Date Start Date Finis	Hand Au SJG ed: 3/2/10 hed: 3/2/10	inger Project No: 1730-129182-01 Coordinates: Ground Elevation: Water Level;	Logged By: GPR Checked By: Shear Vane No:
GROUND WATER DEPTH (m)	GRAPHIC LOG	SOIL DESCRIPTION MAINminor components, strength, colour structure, weathering	Image: Approximate intermediate intermed
		Dark brown TOPSOIL. TOPSOIL with colour lightening slightly. Golden brown SILT. Dry, golden SAND (fg to mg).	
2.0			2.0

HARRISON	GRIE	RSON	CONS	ULTAN	NTS LT	D		HG	File No	1730-
PERCOLATION Project Name:	HTM Holdi	JLI SHEE	1		Location:	Initials	: 3			
Test No:	2	Denth of h	ole (mm):	1150		Diameter:	80mm	in ic.	11110013	1
Actual time	Down to	Diff time	Drop in	Head	Perc rate	1	graphi	al infor	mation	
(hh:mm:ss)	WL (mm)	(min)	WL (mm)	(mm)	(mm/hr)	Head	Y1 (Perc)	Y2	Y3	
Soak Hole 2			•			•	· · ·			1
	•		- •	1150	ļ	j		•••••	·	1
0:00:00	. 0		: .	1150		1150				
0:00:30	490	1.0	490	660	29400	660	29400			
0.01.00	EAD	0.5	; - ·	610 610		÷ • 610			:	•
0:01:00	540 i	0.5	50	910	+ 6000		10000		+	۰ :
0:02:00	690	1.0	150	460	9000	460	9000			
 0.03.00	790	1.0	100	360	6000	 360	6000		,	i• ·
	1		+	<u>i</u>		+	÷			<u>+</u>
0:04:00	860	1.0	70	290	4200	290	4200		÷	i .
0:05:00	910	1.0	50	240	3000	240	3000			1
		1.0		205	2400	-	7100			
	· 945	1.U		205	2100	· 205	- 2100 ,			: .
0:07:00	970	1.0	25	. 180	1500	180	1500			1
0.08.00	1 990	1.0	1 - 20	160	1200	160	1200	•		1
	1				1	-			-	1
0:09:00	1000	1.0	10	150	600	150	600	-	ł	
0:10:00	1025	1.0	[:] 25	125	1500	125	1500			
0.11.00	÷ ·	DEFTU	÷	1150	<u>.</u>	1150	- ·		4 -	
. 0.11.00	i U		÷ …· · …	+	1				÷ .	
0:11:30	470	0.5	470	680	56400	680	56400		:	
0:12:00	625	0.5	155	525	18600	, 525	18600		-,	
	1 770		-		0700	200	0700			•
–	. //0	1.0	145 ;						ı-	
0:14:00	850	1.0	80	300	4800	300	4800			:
0:15:00	900	1.0	50	250	3000	250	3000			ļ
	-		+ ·		1	-	+		:	
0:16:00	940	1.0	40 - ·· -	210	2400	210	2400			ļ
0:17:00	960	1.0	20	190	1200	190	1200			1
0:18:00	980	1.0	20	170	1200	170	1200	·		÷
			·	-	1	-		· -		
0:19:00	1000	1.0	20 4	150	1200	150	1200	·		1
0:20:00	1015	1.0	15	. 135	900	135	900		:	
·	- 1	-	1		÷	ł	· · · · · ·		ŧ	i

. v

ŀ	q	eo	lab	CLIENT: HTM Holdings Ltd	BOREHOLE No: HA2
	air,	soil &	k water	PROJECT: , 112 James Street, Whaka	catane Sheet 1 of 1
Drill Drill Dat Dat	I Type: led By: le Starte le Finish	Har SJ(d: 3/2 ed: 3/2	nd Auger 3 /10 /10	Project No: 1730-129182-01 Coordinates: Graund Elevation: Water Level:	Logged By: GPR Checked By: Shear Vane No:
GROUND WATER	DEPTH (m)	GRAPHIC LOG		SOIL DESCRIPTION MAIN/minor components, strength, colour structure, weathering	Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural water content Image: Natural w
			TOPSOIL. (lark brown TOPSOIL. Colour slightly lighter, Dry.	
	0.5	**************************************	Light colour Course grai	ed fine grained sandy SILT. ned SAND. Gold colour, dry.	0.5
	<u> </u>		Course grai particle size	ned SAND. Slightly lighter colour, and slight	tly larger
	-				
	<u>1.5</u>				1.5
	<u>2.0</u>				2.0

Ţ

.

,

141 Cameron Rd, Tauranga. Phone: 07 578 0023

112 James Street, Whakatane Soak Hole Test 2 Head

÷,

				1			т	<u> </u>	5	シ_
(g	eol	ab	CLIENT: River Quays Ltd			BOF	EHOLI	E No: HA	i
air, soil & water laboratory services			water services	PROJECT: , 139 James Street, Whakat	Shee	Sheet 1 of 1				
Drill Type: Hand Auger Project No: 1730-129349-01							y: Bv:	GPR		
Date :	Starte	id: 11/2	10	Ground Elevation:		Shear Va	ne No:			
	Finish					NATURA	L WATER	CONTEN		
	Ē	LOO LO		SOIL DESCRIPTION	E E	PLASTIC	LIMIT		Ĝ	S ORY
	PTH	DHIC		MAIN/minor components, strength, colour structure, weathering	HL	SHEAR S	TRENGT	0 1 I	50 (%) O v	ORA) FEST
	ä	GRA				POCKET	PENETRO	METER	Οp	LAB
	0.0	<u>x 12</u> . <u>x 12</u>	Medium bro	wn TOPSOIL.	0.0	50	10	0 1	50 (kPa)	
		12 . 24 12 . 34					i i			
	-	<u>20</u> <u>20</u> 2								
	-	<u>NI/ NI/</u>			-	+			·	
		<u>12 - 12 - 2</u>					·			
		10 X 12 V			-	+				
	-	<u> </u>		<u></u>						
		× × ×	Light brown	SILT.						
	0.5	× × ×			0.5			·		
	_	× × ×								
	-	× × ×			1					
	-	×××			-	+				
			CLAY, with	some sand,						
					-	+				
	_				-					
ĺ										
	<u>1.0</u>				1.0	<u> </u>				
					ļ .	 		+		
							ť			
1	-	=	Increasing	noisture content.		┿╺╸╸╶┟			.	
ļ						Ţ				
	-		Grev CLAY	Moist		+}				
			,							
	1.3				1	' <u> </u>				
	_					_ 				
			Coarse whil	e/grey SAND.		┼╶╴╴┢			· -	
		· · · · · · · · · · · · · · · · · · ·				 				
		1								
Ì	-				-	+				
ļ	<u><.U</u>	}			2.0	<u>†</u> }				

•

,

HARRISON	I GRIE	RSON	CONS	JLTAN	its lt	D		HG	File No	1730-129349-01
PERCOLATION 7	EST RES	ULT SHEE	Γ						Date	11-Feb-10
Project Name:	River Qua	ys Ltd		Location:	139 James	Street, Wh	akatane		Initials	SJG
Test No:	1	Depth of h	ol <u>e (</u> mm):	_1800		Diameter:	80mm			
Actual time	Do <u>wn t</u> o	Diff time	Drop in	Head	Perc rate		graph	ical inform	nation	
(hh:mm:ss)	WL (mm)	(min)	WL (mm)	(mm)	(mm/hr)	Head	Y1 (Perc)	Y2	Y3	Y4
Soak Hole 1					······					
0:00:00	0			1800		1800				
0:01:00	50	1.0	50	1750	3000	1750	3000			
0:02:00	90	1.0	40	1710	2400	1710	2400			
0:03:00	120	1.0	30	1680	1800	1680	1800		 	
0:04:00	160	1.0	40	1640	2400	1640	2400			
0:05:00	190	1.0	30	1610	1800	1610	1800			
0:10:00	310	5.0	120	1490	1440	1490	1440			
0:15:00	410	5.0	100	1390	1200	1390	1200			
0:20:00	500	5.0	90	1300	1080	1300	1080			
0:30:00	670	10.0	170	1130	1020	1130	1020			
0:40:00	790	10.0	120	1010	720	1010	720			
0:50:00	890	20.0	220	910	660	910	660			
1:00:00	960	10.0	70	840	420	840	420			
1:11:00	1050	11.0	90	750	491	750	491			· · · · · · · · · · · · · · · · · · ·
1:31:00	1130	20.0	80	670	240	670	240			
1:51:00	1200	20.0	70	600	210	600	210			
2:21:00	1270	30.0	70	530	140	530	140			
2:36:00	1300	15.0	30	500	120	500	120			
								[
								· _		
										<u> </u>
	l						<u> </u>	I	<u> </u>	i

•

۰,

139 James Street, Whakatane Soak Hole Test 1 Head

									BOF	REHOLI	E No: HA	2
	air,	soil &	x water	PROJECT:	, 139 James Str	eet, Whakatane			She	et 1	of 1	
Dri	II Type:	Hai	nd Auger	Proi	ect No: 17	30-129349-01		Logged 8	<u> </u>	GPR		·
Dril	lled By:	SJC	3	Coo	rdinates:			Checked	By:			
Dat	te Starte te Finis⊦	ed: 11/. ed: 11/.	2/10 2/10	Grou Wate	und Elevation: er Level:			Shear Va	ne No:			
L CK	1							NATURA	L WATER	CONTEN	τΔ	
ATE	Ê	00					Ê	PLASTIC	LIMIT		Ê	JRY
Ň	E			SOIL DES MAIN\minor.compo	SCRIPTION nents, strength, colou	IT	I) H	5(<u>1</u>	00 1	50 (%)	STS
I Z		APF		structure	, weathering		L L	SHEAR S REMOU	STRENGT	H EAR	Ov ⊚r	Ю Ш
SRC		89						POCKET	PENETR	OMETER	Ор	ΓM
—	0.0	<u>sty . sty</u>	Medium bro	wn, crumbly TOP	SOIL.		0.0		<u>ור נ</u>	<u> </u>	150 (KPa)	.
	{	1/ 24/ 2										
		<u>NG 16</u>					-				-	
		<u> 1</u> 1 1]		
	-	<u>~~</u> <u>~</u>									-	
		34.34										
	-	×	Crumbly, lig	ht brown Clayey	SILT.		- -					
	ł	×										
	-	× × × ×					-				-	
	0.5	*~~*	 				0.6					
	0.5	ׯ×									+	
		× × ×										
	-	× × ×					-					
	_	×_×_										
		××									1	
	_	×	Golden Clay	/ey SILT.						L	~	
		× _ ×										
}	_	*~~]		
	ĺ	× * `										
	<u>1.0</u>		Ingrossing		areasing moist		1.0					
ł	ł	× _ ×	increasing c	lay content and i	screasing moist	ule.						
	-	×_×					_					
		<u>~</u> ~										
}	-	<u>َ</u> * ``					-					
	ł	× × ×										
	-	××÷					-					
		<u>^ ~ ^ </u>	White SAND	D (fg).			-					
	-						-				-	
		<u>i i i</u>	Moist, sticky	, light brown CLA	Y.		1					
	<u>1.5</u>						<u>1.5</u>	<u> </u>			+	
										1		
	-						-					
01.20	-						-					
107								_	_			
			147									
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	_		wet CLAY.									
	<u>2.0</u>						2.0					
ž I												
ăl İ	i						1			1	1	

.

HARRISO	N GRIE	RSON	CONS	ULTAN	TS LT	D		HG	File No	1730-129349-01
PERCOLATION	TEST RES	ULT SHEE	T						Date	11-Feb-10
Project Name:	River Qua	ys Ltd	1	Location:	139 James	Street, Wr	akatane		Initials	SJG
Test No:	2	Depth of h	<u>ole (mm):</u>	1840		Diameter:	80mm		L	<u> </u>
Actual time	Down to	Diff time	Drop in	Head	Perc rate		graph	ical inform	nation	Va
(<u>nn:mm:ss)</u>	<u>1wc (mm)</u>	<u>(min)</u>	<u>wL (mm)</u>	<u>((mm)</u>	<u>(mm/nr)</u>	неад	YI (Perc)	¥Z	61	<u>1 14</u>
Soak Hole 2		ļ		 	 ·	 				
0:00:00	0			1840		1840		·		<u> </u>
0:01:00	50	1.0	50	1790	3000	1790	3000			
0:02:00	1.00	1.0	50	1740	3000	1740	3000	ļ		
0:03:00	160	1.0	60	1680	3600	1680	3600			
0:05:00	230	2.0	70	1610	2100	1610	2100			
0:10:00	410	5.0	180	1430	2160	1430	2160			
0:15:00	520	5.0	110	1320	1320	1320	1320			
0:25:00	710	10.0	190	1130	1140	1130	1140	·		
0:35:00	860	10.0	150	980	900	980	900		<u>}</u>	
0:49:00	950	14.0	90	890	386	890	386		 	
1:04:00	1010	15.0	60	830	240	830	240			<u> </u>
1:24:00	1100	20.0	90	740	270	740	270		<u> </u>	
1:44:00	1160	20.0	60	680	180	680	180			<u></u>
2:14:00	1220	30.0	60	620	120	620	120			
2:29:00	1260	15.0	40	580	160	580	160			
2:36:00	1261	7.0	1	579	9	579	9		 	
				<u>-</u>						
									<u> _</u>	
					<u> </u>		1			
							<u> </u>			<u> </u>
										·
						<u></u>			<u> </u>	
1	1				1		ļ			

.

,

139 James Street, Whakatane Soak Hole Test 2 Head

 $\binom{N}{2}$

Harrison Grierson Consultants Limited 22 Louvain Street, Whakatane. Tel. 07 3085478 Fax 07 3084907								
cale 1:10	Title: 92 Eivers Road, Whakatane							
ile:	Date: Wednesday, 4 March 2009							
'age No.:	Project: Falling Head Percolation Tests							

Harrison Grierson Consultants Limited 22 Louvain Street, Whakatane. Tel. 07 3085478 Fax 07 3084907								
Scale 1:10	Title: 92 Eivers Road, Whakatane							
File:	Date: Wednesday, 4 March 2009							
'age No.:	Project: Falling Head Percolation Tests							

BENBOW - 164 JAMES STREET 28/07/09

.

	Harrison Grierson Consultants Limited 22 Louvain Street, Whakatane, Tel, 07 3085478 Fax 07 3084907								
Scale 1:10	Title: Mike Benbow								
File:	Date: Tuesday, 9 June 2009								
age No.:	Project: 164 James Street, Whakatane								

v

Harrison Grierson Consultants Limited 22 Louvain Street, Whakatane. Tel. 07 3085478 Fax 07 3084907							
Scale 1:10	Title: Mike Benbow						
-ile:	Date: Tuesday, 9 June 2009						
Page No.:	Project: 164 James Street, Whakatane						

BENBOW - 164 JAMES STREET 28/07/09

.

	Harrison Grierson Consultants Limited 22 Louvain Street, Whakatane, Tel, 07 3085478 Fax 07 3084907								
Scale 1:10	Title: Mike Benbow								
File:	Date: Tuesday, 9 June 2009								
age No.:	Project: 164 James Street, Whakatane								

v

Harrison Grierson Consultants Limited 22 Louvain Street, Whakatane. Tel. 07 3085478 Fax 07 3084907							
Scale 1:10	Title: Mike Benbow						
-ile:	Date: Tuesday, 9 June 2009						
Page No.:	Project: 164 James Street, Whakatane						

	g	eo	lab	CLIENT: Jason Good			BOREHO	LE No: BH	1
	air, labo	soil 8 pratory	k water services	PROJECT: New Motel Development, 37-39 Whakatane	Sheet 1 of 1				
Dril Dril Dat Dat	l Type: lled By: lle Starte lle Finish	Har SJC d: 9/1 ied: 9/1	nd Auger 6 1/10 1/10	Project No: 1720-130067-01 Coordinates: Ground Elevation: Water Level:	Logged By Checked E Shear Van	r: GP By: he No:	R		
GROUND WATER	DEPTH (m)	GRAPHIC LOG		SOIL DESCRIPTION MAIN/minor components, strength, colour structure, weathering	DEPTH (m)	NATURAL LIQUID LI PLASTIC 50 SHEAR S REMOULI POCKET 50	L WATER CONT MIT LIMIT 100 TRENGTH DED SHEAR PENETROMETE 100	ENT ∆ X ⊡ 150 (%) O v ⊙ r R O p 150 (kPa)	LABORATORY TESTS
11 16/11/10 GF			Light colour Orange/brown Light brown increased.	ed, dusty, hard TOPSOIL					
SPJ GEOLAB.G		· · · · · ·					· · · · · · · · ·		
SOIL GOOD.C	2.0				2.0				

HARRISON	GRI	RSON	CONS	ULTA	NTS LT	D		HG	File No	1720-130067-01
PERCOLATION 1	EST RES	ULT SHEE	T		1				Date	, 16-Feb-10
Project Name:	Good Mot	el			Location:	37-39 Lan	ing Road		Initials	SJG
Test No:	1	Depth of h	ole (mm):	<u>630</u>		Diameter:	80mm			
Actual time	Down to	Diff time	Drop in	Head	Perc rate		graph	ical infor	mation	
(hh:mm:ss)	WL (mm)	(<u>тіл)</u>	WL (mm)	<u>(mm)</u>	<u>(mm/hr)</u>	Head	Y1 (Perc)	Y2	<u>Y3</u>	Y4
Soak Hole 1									ļ [
0:00:00	0			630		630				
0:01:00	520	1.0	520	110	31200	110	31200			
0:02:00	630	1.0	110	0	6600	0	6600			
0:03:00	0	REFILL	0	630		630				
0:03:30	480	0.5	480	150	57600	150	57600			
0:04:30	540	1.0	60	90	3600	90	3600			
0:05:15	620	0.8	80	10	6400	10	6400			
0:06:00	0	REFILL	0	630		630				
0:06:30	340	0.5	340	290	40800	290	40800	1		
0:07:00	450	0.5	110	180	13200	180	13200			
0:07:30	530	0.5	80	100	9600	100	9600			
0:08:00	570	0.5	40	60	4800	60	4800			
0:09:00	600	1.0	30	30	1800	30	1800			

.

•

•

37-39 Landing Road, Whakatane Soak Hole Test 1 Head

.

	g	eo	lab	CLIENT:	Jason Good	1			BORE	EHOLE	No: BH	2			
	air, Iabo	soil pratory	& water services	PROJECT:	PROJECT: New Motel Development, 37-39 Landing Road, Whakatane							Sheet 1 of 1			
Dr Dr Da Da	rili Type: rilled By: ate Starte ate Finish	Ha SJ ed: 9/1 ed: 9/1	nd Auger G 1/10 1/10	Pro Con Gro Wa	ject No: proinates; pund Elevation: ter Level;	1720-130067-01		Logged By Checked B Shear Van	; y: e No:	GPR					
GROUND WATER	DEPTH (m)	GRAPHIC LOG		SOIL DE MAIN\minor comp structur	SCRIPTION on ents, strength, e, weathering	calour	DEPTH (m)	NATURAL LIQUID LII PLASTIC I 50 SHEAR S REMOULU POCKET I	WATER C MIT LIMIT 100 TRENGTH DED SHEA PENETRON 100	R METER	Δ Χ Ο (%) Ο ν Ο γ Ο ρ	LABORATORY TESTS			
	0.0	<u></u>	TOPSOIL.	<u></u>			0.0								
	-	<u>11</u> 12 12 12 12 12 12 12 12 12 12 12 12 12					-								
	0.5	<u>. 14 14</u>			<u></u>		0.5								
	-	1/ 21/ X	Light coost		L.		-	 							
	-	<u>, i, i</u> , i	Red. drv. u	niform graded (fo) SAND.		–	+ +							
		<u>}</u>	Dark red, s	iightly moist, unif	orm graded (fg) SAND.	{								
							-	 − − − − 							
	-						-	┼ ╺╶╶╺┝							
	1.0						1.0								
	-						-								
	-								 .						
}	-														
			Light colour	ed, dry, uniform	graded (fg) S	SAND.	-	 							
	<u>1.5</u>)* · · · ·					1.5								
							-								
T 16/11/10	-						-		-						
OLAB.GD		· · · · · ·		····						• •					
SPJ GE							-		-						
JIL GOOD.G	<u>2.0</u>						2.0								
ы М	t l						1		_		I				

•

HARRISON	GRIE	RSON	CONSU	JLTAN	ITS LT	D		HG	File No	1720-130067-01
PERCOLATION T	EST RES	JLT SHEET			<u> </u>			}	Date	16-Feb-10
Project Name:	Good Mot	el			Location:	37-39 Land	ding Road		Initials	SJG
Test No:	2	Depth of h	ole (mm):	1250		Diameter:	80mm		[
Actual time	Down to	Diff time	Drop in	Head	Perc rate		graph	ical infor	mation	
(hh:mm:ss)	<u> WL (mm)</u>	(<u>min)</u>	<u>WL (mm)</u>	<u>(mm)</u>	(mm/hr)	Head	Y1 (Perc)	YZ	<u>Y3</u>	Y4
Soak Hole 2	 									
0:00:00	0			1250	ļ	1250			 	
0:00:30	600	1.0	600	650	36000	650	36000		Ì	
0:01:00	780	0.5	180	470	21600	470	21600			
0:01:30	900	0.5	120	350	14400	350	14400			
0:02:30	1000	1.0	100	250	6000	250	6000			
0:03:30	1080	1.0	80	170	4800	170	4800	·····	·- 	
0:05:30	1150	2.0	70	100	2100	100	2100		F	
0:07:00	1200	1.5	50	50	2000	50	2000		}	
0:08:20	1250	1.3	50	0	2250	0	2250	+	<u> </u>	
0:09:00	0	REFILL	0	1250	<u> </u>	1250	<u> </u>		+ <u>-</u>	<u> </u>
0:09:30	500	0.5	500	750	60000	750	60000		·[·	
0:10:00	700	0.5	200	550	24000	550	24000			+
0:11:00	840	1.0	140	410	8400	410	8400			
0:12:00	930	1.0	90	320	5400	320	5400		┨・ — ┆	
0:13:00	1010	1.0	80	240	4800	240	4800			
0:14:30	1080	1.5	70	170	2800	170	2800	 -		· · · · · · · · · · · · · · · · · · ·
0:16:00	1140	1.5	60	110	2400	110	2400]	1	
0:17:30	1190	1.5	50	60	2000	60	2000			
0:18:00	1200	0.5	10	50	1200	50	1200	1		
0:19:00	0	REFILL	0	1250		1250				
0:20:00	740	1.0	740	510	44400	510	44400			
0:25:30	1170	5.5	430	80	4691	80	4691			
0:27:30	1200	2.0	30	50	900	50	900		† 	

į

,

J

37-39 Landing Road, Whakatane Soak Hole Test 2 Head

• • • •

.

44	BROWN DAY GROUP	These derivings shall be traif at comparison with of Escience may not other contractions, despine and toos Registers and with other traiters independent at any tip hystolic diving the matrix of the spatial, of despinations shall be obtained in the deshift.	Rev: Dato. Abact	RENDEZVOUS MOTEL	MOTEL DEVELOPMENT	DETAILED SITE PLAN	John 1547 Cherry	THE COPYRIGHT OF THE DRAWING IS THE PROPERTY OF THE ARCHITECT.
	ARCHITECTS	Julius gaps of day with Data work. All dispersions all all the works of Jan Ban contention before your builters and babies also in contention of			12 & 14 TOROA STREET.		Ptal Date Scrin (41) Piol Date Scrin (43)	
	PPOWN DAY COMERCIAL WRACH	Madanaship and hedrich are to be in second-test with the extremet perset HCH codes, HCPC and beyoning and and for al algorithm production, and the			WHAKATANE		Data Frie Localos	
ge	olab	CLIENT: P&J Tait			BOREHO	LE No: BH	1	
--	---	--	------------------	---	---	--	---------------------	
air, sa labora	oil & water tory services	PROJECT: White Island Motel Extension Whakatane	n, 12-14 Toroa S	itreet,	Sheet 1	of 1		
Drill Type: Drilled By: Date Started: Date Finished:	Hand Auger SJG 13/12/10 13/12/10	Project No: 1720-129342-01 Coordinates: Ground Elevation: Water Level;	La Ci Si	ogged By: hecked By: hear Vane	GPF No:	2		
GROUND WATER DEPTH (m)	GRAPHIC LOG	SOIL DESCRIPTION MAIN/minor components, strength, colour structure, weathering	DEPTH (m)	ATURAL V IQUID LIM PLASTIC LI 50 SHEAR STI REMOULDI POCKET PL	VATER CONTE IT MIT 100 RENGTH ED SHEAR ENETROMETE	NT ∆ X □ 150 (%) ⊙ v ⊙ r ₹ O p	LABORATORY TESTS	
0.0 2 2 2 2 2 2 2 2 2 2 2 2 2	Light brown,	dry, sandy TOPSOIL.	0,0,					
					·			
	Sand lighter	colour and more course. Pumice still present			·			
	Sand colour	light grey. golden colour. Pumice content reducing.						
					·			
GEOLAB.GDT 14/12/	Sand now re	d/brown colour. Pumice still present.						
2011 1711 1917			2.0					

٠

.

· [q	eo	lab	CLIENT: P&J Tait				BOR	REHOLE	No: BH	2
		air, labo	soil pratory	& water services	PROJECT: White Island Motel Whakatane	Extension, 12-14	Toroa	a Street,	She	et 1	of 1	
	Drill Drill Date Date	Type: ed By: e Starte e Finish	Ha SJ Id: 13. Ned: 13	nd Auger G 112/10 /12/10	Project No: 1720-1 Coordinates: Ground Elevation: Water Level;	29342-01		Logged E Checked Shear Va	By: By: ne No:	GPR		
	GROUND WATER	DEPTH (m)	GRAPHIC LOG		SOIL DESCRIPTION MAIN/minor components, strength, colour structure, weathering		DEPTH (m)	NATURA LIQUID I PLASTIC SHEAR REMOU POCKE	AL WATER IMIT LIMIT 0 10 STRENGTH LDED SHE I PENETRO 0 10	CONTENT 10 15 1 AR DMETER 10 15	∆ X □ 0 (%) ⊙ v ⊙ r ○ p	LABORATORY TESTS
		0.0	<u> 3 6 3 7</u> 1/ <u>3 1/</u> 3	Light browr	n, dry, sandy TOPSOIL.		0.0				1	
		_		Light brown	n, dry SAND, with purnice intersperse	:d	-					
		<u>0.5</u>		intersperse	wn, dry, uniform graded SAND (mg) d throughout.	with pumice	<u>0.5</u>					
		_		- - -			_					
ļ		_					_					
		_		Colour cha	nge to a mix of red and white/grey sa	ind,	_					
		_					_					
		<u>1.0</u>					<u>1.0</u>					
		_		Sand now v	white and more course.				-			
		_					-			•'		
			· · · · ·	Change in o	colour to red/brown.		_					
							15					
		<u>.,,</u>					-					
1/12/10		_		Change in o	colour to grey.		_					
B.GDT 1			· · · · ·				_					:
U GEOLA												
L TAIT.GP		<u>2.0</u>					<u>2.0</u>					ĺ
<u>I</u>		<u> </u>]		

ς.

.

HARRISON	GRIE	RSON	CONSU	JLTAN	ITS LT	D		HG	File No	1720-129342-01
PERCOLATION T	EST RES	JLT SHEET	-		1				Date	13-Dec-10
Project Name:	White Isla	nd Motel			Location:	12-14 Toro	a Street		Initials	SJG
Test No:	2	Depth of h	ole (mm):	1800		Diameter:	80mm			
Actual time	Down to	Diff time	Drop in	Head	Perc rate		graph	ical infor	nation	
(hh:mm:ss)	WL (mm)	(min)	<u>WL (mm)</u>	<u>(mm)</u>	(mm/hr)	Head	Y1 (Perc)	Y2	<u>Y3</u>	Y4
Soak Hole 2										
0:00:00	0			1800		1800				
0:00:30	930	1.0	930	870	55800	870	55800	·		
0:01:00	1100	0.5	170	700	20400	700	20400			
0:01:30	1200	0.5	100	600	12000	600	12000			
0:02:30	1350	1.0	150	450	9000	450	9000			
0:03:30	1400	1.0	50	400	3000	400	3000			
0:04:00	0	REFILL	0	1800		1800				
0:04:30	630	0.5	630	1170	75600	1170	75600			
0:05:00	920	0.5	290	880	34800	880	34800			
0:05:30	1020	0.5	100	780	12000	780	12000			
0:06:00	1080	0.5	60	720	7200	720	7200			
0:07:00	1140	1.0	60	660	3600	660	3600			
0:08:00	1170	1.0	30	630	1800	630	1800	_		
0:09:00	1200	1.0	30	600	1800	600	1800			
0:10:00	1350	1.0	150	450	9000	450	9000			
0:11:00	0	REFILL	D	1800		1800				
0:11:30	580	0.5	580	1220	69600	1220	69600			
0:12:00	800	0.5	220	1000	26400	1000	26400			
0:12:30	900	0.5	100	900	12000	900	12000			
0:13:00	1050	0.5	150	750	18000	750	18000			
0:14:00	1110	1.0	60	690	3600	690	3600			
0:15:00	1130	1.0	20	670	1200	670	1200			

-

. ...

- ---

12-14 Toroa Street, Whakatane Soak Hole Test 2 Head

ه ب

Client:	Whakatane District Council		
Project Title:	Percolation Tests	Page 17	
Site Address:	Boundy Of No 39 & 43 Bunyan	No of Pages 19	
	Road Coastlands	Test 17 of 19	
City:	Whakatane	Date 15/06/2011	
File Number:	614914-M-E-S001	By RGS	▁▎▎▏▋▕▋▕▀▋
		TGA REV 2 9/07/2010	CONSULTANTS

TGA REV 2 9/07/2010

Local People. Global Knowledge.

Stormwater Disposal - Percolation Test Results

Notes:

.

· · .

> Tests carried out in accordance with Section E1 of the NZ Building Code

Time	oval Dror	Cumpul-thur	I		•	Wa	ter lev	vel vers	us tim	e		
					<u> </u>]
	(mm)	<u>(mm)</u>		-20	00 †	\mathbf{i}						
1	700	700		8 5 -4	00 🕂							
2	-700	-700		1 60 	oo 🖡							
3	-150	-900		exe								
Ű	-00	-300									ime (mi	n)
				-10	+ 00 0	0.5	1	1.5	2	2.5	3	3.5
				L								
					.00m	TOPSOIL.	Silty S /	AND, ver	v moist			
				0.	.30m							
				•••		SAND med	ium, br	own, uni	formly	graded,		
						very moist -	wet.					
				• • • 0.9	50m							
		ĺ										
				• • •								
				•••								
				•••								
				••• 1.0	00m							
				•••		Becomes b	rownis	h grey ve	ry mois	st - wet.		
				•••								
				•••								
Augered Hole d	lenth (1)	2500	mm	•••	50							
Presnak hole dr	enth (2)	2000	mm		SOL							
End test hole de	epth(3)	900	mm									
Auger Diameter	-	100	mm									
Water level dror	• 0	900	mm									
, Av test depth (2-	+3)/2	1450	mm	• • • 2.0	00m							
Depth of topsoil		300	mm									
Permeable Dep	th (av - top:	1150	mm									
modified Hole D	lameter	1 31	mm	• • •								
Water Volume L	_ost	12.2	litres	• • •								
Hole Surface Ar	ea	0.30	m²	• • • 2.5	50m	Very moist -	wet.					
Total time of tes	st	3	min	E.0	О.В .							
				when fi	ime	0 to		্র্	min			
			nerme	able depth	n is	1150 to	tiad.	25	ິງ mm			
			901110 91	urface are	a is			0.3	3 m^2			
Soakage rate		13 44	litres/m	² /min	u 13			0.0				
rounago raco		10.77										
Notes: Loc	ation on ho	undry between tw		erties at th	elo	vest around	d level	nossihl	e			
LOO		analy between tw	o hiche		2 101				<u>v.</u>			

┸┓
ANTS

Stormwater Disposal - Percolation Test Results

Notes:

•

· ·

Tests carried out in accordance with Section E1 of the NZ Building Code

Time Level Drop Cumulative 0 0 0 1 -1500 -1500 2 0 -1500 3 -50 -1550 4 -50 -1550 5 -1550 6 -50 1 -1500 3 -50 -50 -1550 -50 -50							
Time (minutes) Level Drop (mm) Cumulative (mm) 0 0 0 1 -1500 -1500 2 0 -1500 3 -50 -1550 -50 -1550 -1550 -1550 -50 -1550 -1550 -1550 -50 -1550 -1550 -1550 -50 -1550 -1550 -1550 -1550 -1550 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -15	 			1			Water level versus time
(minutes) (mm) (mm) 0 0 0 -1500 2 0 -1500 3 -50 -1550 3 -50 -1550 4 -1500 -1550 3 -50 -1550 -50 -1550 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -1550 -50 -150 -50 -150 -50 -150 -50 -150 -50 -150 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 <t< td=""><td>Time</td><td>Level Drop</td><td>Cumulative</td><td></td><td></td><td>0</td><td></td></t<>	Time	Level Drop	Cumulative			0	
0 0 0 -1500 -1500 2 0 -1500 -1500 -1500 3 -50 -1550 -1550 9 9 9 9 9 -2000 -0.5 1.5 2.5 Time(min -2000 -0.5 1.5 2.5 Time(min -2000 -0.5 1.5 -2.5 Time(min -2000 -0.5 1.5 -2.5 Time(min -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -2000	(minutes)	(mm)	(mm)			500	
Augered Hole depth (1) Presoak hole depth (2) End test hole depth (2) End test hole depth (3) Auger 2 Diameter Water level drop Auger 2 Diameter Water level drop Auger 2 Diameter Water level drop Auger 2 Diameter Water level drop Augered Hole Depth (av - top: Premeable Depth (av - top: Mater level drop Augered Hole Diameter Water level drop Augered Hole Diameter Water level drop Augered Hole Diameter Water level drop Augered Hole Diameter Mater level drop Auge	0	0	0		- Ê	-500 -	
Augered Hole depth (1) Presoak hole depth (2) End test hole depth (2) End test hole depth (3) Augered Hole Diameter Water level drop Permeable Depth (av - top: Permeable Depth (av - t	1	-1500	-1500			000 -	
3 -30 -1550 3 -30 -1550 3 -30 -1550 4 2 2.5 Timed(mir -2000 7 -70PSOIL, Silty SAND, very moist. Becomes SAND medium, brownish grey, very TOPSOIL, Silty SAND, very moist. 7	2	0	-1500		le f		
Augered Hole depth (1) 3200 mm Presoak hole depth (2) 550 mm End test hole depth (3) 1550 mm Augered Hole depth (2) 1550 mm End test hole depth (2) 1550 mm End test hole depth (2) 1550 mm Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm Water Volume Lost 17.1 litres Total time of test 3 min	3	-50	-1550		Lev Lev	1500 🛔	
Augered Hole depth (1) Presoak hole depth (2) End test hole depth (3) Augered Fole depth (2+3)/2 2205 Marking SaND medium, brownish grey.					S	Ĭ	
Augered Hole depth (1) Presoak hole depth (2) End test hole depth (3) Auger Diameter Water Volume Lost Hole Surface Area Total time of test TOPSOIL, Silty SAND, very moist. Becomes SAND medium, greyish brown, uniformly graded, very moist - wet. SAND medium, greyish brown, uniformly graded, very moist - wet. Sand San					-2	2000 -	
Augered Hole depth (1) 3200 mm SAND medium, brownish grey, very Augered Hole depth (2) 3000 mm sand Presoak hole depth (2) 3000 mm secomes brownish grey. Augered Hole depth (2) 3000 mm secomes brownish grey. Augered Hole depth (2) 3000 mm secomes brownish grey. Nuger Diameter 100 mm Auger Diameter 100 mm Water level drop 1550 mm Permeable Depth (av - top: 1775 mm Water Volume Lost 17.1 itres Hole Surface Area 0.38 m² Total time of test 3 min Eo.8.				-		0.00m	
Augered Hole depth (1) 3200 mm SAND medium, brownish grey, very Augered Hole depth (2) 3000 mm sand Presoak hole depth (2) 3000 mm secomes SAND medium, brownish grey, very Augered Hole depth (2) 3000 mm secomes brownish grey. End test hole depth (2) 3000 mm secomes brownish grey. Augered Hole depth (2) 3000 mm secomes brownish grey. End test hole depth (2) 3000 mm secomes brownish grey. Permeable Diameter 100 mm Auger direct drop 1550 mm Auger Diameter 100 mm Permeable Depth (av - top: 1775 mm Mater Volume Lost 17.1 ittres Hole Surface Area 0.38 m² Total time of test 3 min Eo.8.			į I				TOPSOIL, Silty SAND, very moist.
Augered Hole depth (1) 3200 mm Presoak hole depth (2) 3000 mm End test hole depth (3) 1550 mm Augered Hole Joameter 100 mm Water level drop 1550 mm Avitest depth (2+3)/2 2275 mm Permeable Depth (av - top: 1775 mm Muter Volume Lost 17.1 ittres Hole Surface Area 0.38 m² Total time of test 3 min					• • •		Becomes SAND medium, brownish grey, very mois
Augered Hole depth (1) Presoak hole depth (2) End test hole depth (3) Auger Diameter Water level drop Permeable Depth (av - top: Permeable Depth (av - top: Hole Surface Area 1.500 Minimized Area 1.500 Minimized Area Minimized Area					• • •		
Augered Hole depth (1) Presoak hole depth (2) End test hole depth (2) End test hole depth (3) Auger Diameter Water level drop Permeable Depth (av - top: Permeable Depth (av - top: Hole Surface Area Hole Surface							IOPSOIL, Silty SAND, very moist.
Augered Hole depth (1) 3200 mm I.00m Becomes brownish grey. Augered Hole depth (2) 3000 mm I.50m I.50m End test hole depth (3) 1550 mm I.50m Auger Diameter 100 mm I.50m Water level drop 1550 mm I.50m Av test depth (2+3)/2 2275 mm I.50m Depth of topsoil 500 mm I.50m Permeable Depth (av - top: 1775 mm I.50m Water Volume Lost 17.1 litres Very moist - wet. Hole Surface Area 0.38 m² I.50m Total time of test 3 min E.0.B.							
Augered Hole depth (1) 3200 mm Becomes brownish grey. Augered Hole depth (1) 3200 mm Presoak hole depth (2) 3000 mm End test hole depth (3) 1550 mm Auger Diameter 100 mm Water level drop 1550 mm Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² Total time of test 3 min Eo.B.						0.70m	SAND modium grouish brown uniformly graded
Augered Hole depth (1) 3200 mm 1.00m Presoak hole depth (2) 3000 mm 1.50m End test hole depth (3) 1550 mm Auger Diameter 100 mm Water level drop 1550 mm Av test depth (2+3)/2 2275 mm Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² s.20m Wear time of test 3 min E.0.8.					•••		ven/ moist - wet
Augered Hole depth (1) 3200 mm Becomes brownish grey. Augered Hole depth (1) 3200 mm I.50m Presoak hole depth (2) 3000 mm I.50m End test hole depth (3) 1550 mm I.50m Auger Diameter 100 mm I.50m Water level drop 1550 mm I.50m Av test depth (2+3)/2 2275 mm I.50m Depth of topsoil 500 mm I.50m Permeable Depth (av - top: 1775 mm I.50m Water Volume Lost 17.1 litres Very moist - wet. Hole Surface Area 0.38 m² Total time of test 3 min E.0.8							voly molet work
Augered Hole depth (1) 3200 mm Becomes brownish grey. Augered Hole depth (2) 3000 mm 1.50m End test hole depth (2) 3000 mm 1.50m End test hole depth (3) 1550 mm 2.00m Auger Diameter 100 mm 2.00m Water level drop 1550 mm 2.00m Av test depth (2+3)/2 2275 mm 2.00m Depth of topsoil 500 mm 2.00m Permeable Depth (av - top: 1775 mm 3.00m Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² 3.20m Total time of test 3 min E.o.B. 2.00m					• • •	1.00m	
Augered Hole depth (1) 3200 mm Presoak hole depth (2) 3000 mm End test hole depth (3) 1550 mm Auger Diameter 100 mm Water level drop 1550 mm Av test depth (2+3)/2 2275 mm Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm modified Hole Diameter 119 mm Water Volume Lost 17.1 itres Hole Surface Area 0.38 m² Total time of test 3 min							Becomes brownish grey.
Augered Hole depth (1) 3200 mm Presoak hole depth (2) 3000 mm End test hole depth (3) 1550 mm Auger Diameter 100 mm Water level drop 1550 mm Av test depth (2+3)/2 2275 mm Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm modified Hole Diameter 119 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² Total time of test 3 min E.O.B.							
Augered Hole depth (1) 3200 mm Presoak hole depth (2) 3000 mm End test hole depth (3) 1550 mm Auger Diameter 100 mm Water level drop 1550 mm Av test depth (2+3)/2 2275 mm Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm modified Hole Diameter 119 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² Total time of test 3 min E.O.B.					• • •	1	
Augered Hole depth (1) 3200 mm 1.50m Presoak hole depth (2) 3000 mm 1.50m End test hole depth (3) 1550 mm 1.50m Auger Diameter 100 mm 1.50m Water level drop 1550 mm 2.00m Av test depth (2+3)/2 2275 mm 2.00m Depth of topsoil 500 mm 2.00m Permeable Depth (av - top: 1775 mm 3.00m Water Volume Lost 17.1 litres 3.20m Total time of test 3 min E.O.B. 3.00m					• • •		
Presoak hole depth (2) 3000 mm • • • End test hole depth (3) 1550 mm • • • Auger Diameter 100 mm • • • Water level drop 1550 mm • • • Av test depth (2+3)/2 2275 mm • • • Depth of topsoil 500 mm • • • Permeable Depth (av - top: 1775 mm • • • modified Hole Diameter 119 mm • • • Water Volume Lost 17.1 litres • • • Hole Surface Area 0.38 m ² • • • 3.20m Total time of test 3 min E.o.B. when time 0 to 3.300	Augered Hole	e depth (1)	3200	mm	• • •	1.50m	
Auger Diameter 100 mm •••• Auger Diameter 100 mm •••• Water level drop 1550 mm •••• Av test depth (2+3)/2 2275 mm •••• Depth of topsoil 500 mm •••• Permeable Depth (av - top: 1775 mm •••• modified Hole Diameter 119 mm •••• Water Volume Lost 17.1 litres •••• Hole Surface Area 0.38 m² •••• Total time of test 3 min E.O.B.	Presoak noie	depth (2)	4550	mm	• • •		
Water level drop 1550 mm Av test depth (2+3)/2 2275 mm Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm modified Hole Diameter 119 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² Total time of test 3 min		ter	100	mm	•••		
Av test depth (2+3)/2 2275 mm ••• 2.00m Depth of topsoil 500 mm ••• 2.00m Permeable Depth (av - top: 1775 mm ••• ••• modified Hole Diameter 119 mm ••• ••• Water Volume Lost 17.1 litres ••• s.em Hole Surface Area 0.38 m² ••• s.em Total time of test 3 min E.o.B. when time 0 to	Water level di	ron	1550	mm			
Depth of topsoil 500 mm Permeable Depth (av - top: 1775 mm modified Hole Diameter 119 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² Total time of test 3 min	Av test depth	(2+3)/2	2275	mm		2.00m	
Permeable Depth (av - top: 1775 mm modified Hole Diameter 119 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² Total time of test 3 min E.O.B.	Depth of tops	oil	500	mm	• • •		
modified Hole Diameter 119 mm Water Volume Lost 17.1 litres Hole Surface Area 0.38 m² Total time of test 3 min E.O.B.	Permeable De	epth (av - top:	1775	mm			
Water Volume Lost 17.1 litres ••• Very moist - wet. Hole Surface Area 0.38 m ² ••• 3.20m Total time of test 3 min E.O.B.	modified Hole	Diameter	119	mm	• • •		
Hole Surface Area 0.38 m ²] _{3.20m} Total time of test 3 min E.O.B.	Water Volume	e Lost	17.1	litres	• • •		Very moist - wet.
Total time of test 3 min E.O.B.	Hole Surface	Агеа	0.38	m² [3.20m	
when time 0 to state min	Total time of t	lest	3	min		E.O.B.	
					when	time	0 to 3 min
permeable depth is 1775 to 225 mm				permea	able dec	th is	1775 to 225 mm
surface area is 0.38 m ²				su	rface a	rea is	0.38 m ²
Soakage rate 14.88 litres/m ² /min	Soakage rate	•	14.88 /	litres/m ²	/min		
	5				10 U		
Notes: Moved location to lowest possible ground level at base of slope in road reserve.	Notes: N	Noved location	ı to lowest possibl	le groun	d level a	at bas	e of slope in road reserve.
Borehole collapsed to 1550mm during test.	В	orehole colla	psed to 1550mm (during te	st.		
		·		-			

Client:	·····	Whakatane Distr	rict Cour	icil								·
Project	Title:	Percolation Tests	s			Pa	age	19				
Site Add	dress:	Aipha Avenue Reserve Coastlands				No of Pages 19						
						Te	est	19 of 19				
City:		Whakatane			D	ate	15/06/2011		V, L			
File Nun	nber:	614914-M-E-S001				<u>E</u>	<u>sy</u>	RGS				
Storm	water Dispo	osal - Percolat	tion Te	st Re	sults	TG	A RE	V 2 9/07/2010	Loc	al People	a. Global Kno	wiedge.
Notes:	Tests carried NZ Building C	out in accordance Code	e with Se	ection E	1 of th	e						
	1					W	ater	level versu	is tim	е		
Time	Level Drop	Cumulative			0 1	<u></u>						
(minutes)	(mm)	(mm)			-200	\mathbf{i}						
U 1	-650	-650		E E	-400							
2	-100	-750		/el fi	-600 -							
3	-50	-800		Surfe	-800 +							
					-1000 🖡		+				Time (mi	<u>n) </u>
					0	0.5	1	1.5	2	2.5	3	3.5
Augered Hol	e depth (1)	3400 3200	mm		0.20m 0.50m 1.00m	TOPSOIL, fine - mec SAND mec very moist	SIL ⁻ lium dium - we	T minor Sano gravel, ver , brownish gi t.	l occas y mois ey, un	sional s st. iformly	subrounde	d
End test hole auger Diame Vater level d	e depth (2) e depth (3) eter Irop	800 800 800 800	mm mm mm	• • •								
Pepth of tops Permeable D Prodified Hole	soil epth (av - top: Diameter	300 1700 130	mm mm mm	• • • • • • • • •	2.00m							
Vater Volum	e Lost	10.7	litres	• • •		Becomes	wet.					
ole Surface otal time of	Area test	0.55	m ⁻ [min	• • •	3.40m E.O.B.							
			permea su	whe able de urface a	n time pth is area is	0 ta 1700 ta	0	3 900 0.55	min mm m ²			
loakage rate	9	6.52	litres/m	f/min								
lotes: E	3orehole colla	psed to 800m duri	ing test.									

.....

· • •

134945-M-E-S002 - Percolation Testing .xis/11/10/2011

James, 52 Hinemoa St, Whakatane Soak Tests 27th July 2011 Falling Head

Readings after 35 minutes discarded.

-

time (mins)	H1 T1 WL (cm)	H1 T2 WL (cm)	H2 T1 WL (cm)	H2 T2 WL. (cm)	H3 T1 WL (cm)	H3 T2 WL (cm)
0	0	D	0	0	0	0
0.5	12	15	14	9	11	10
1	22	24	20	15	18	17
1.5	29	33	25		23	
2	36	39	30	22	29	27
2.5	41	44	34		34	
3	45	49	38	29	38	35
3.5	49	52	41			
4	52	55	43	35	45	41
5	56	60	47	39	51	48
6	60		50			
7			53			
8			56			
9			58			
10	68	73	60	52	68	63
15	75	79	68		76	
20	80		74	67	82	77
25		86	77			
30	84		80	74	88	83
35		90				
40	88		83	79	92	87
45		92				
50	91		85		95	
55		94				
60	93		87	83	97	93
65		96				
68			89			
70	94				99	95
74						96
75		97				
80	96			87		
83	98					

.

C:\Data\StormWater Disp\James Hinemoa\James soak test.doc

Page 3 of 3

River Lake Ltd 13 Louvain Street, Whakatāne New Zealand m. +64 27 308 7224 www.riverlake.co.nz

	-
SUBJECT	Whakatāne Comprehensive Stormwater consent application: Response to Section 92 request for further information
FILE	
DATE	7 November 2023
FROM	Keith Hamill
СОРҮ	
ТО	Astrid Hutchinson

Bay of Plenty Regional Council (BOPRC) has requested further information relating to the comprehensive stormwater consent application lodged by Whakatāne District Council on 16 January 2023. This memo provides a response to some of the questions raised.

QUESTION

Please provide an assessment against RNRP policy DW P1 (see below), particularly regarding whether or not the limits outlined in the policy are met.

Stream name	RNRP Schedule 9 water quality classification
Awatapu Lagoon	Unspecified Water bodies
Sullivan Lake	Unspecified Water bodies
Hinemoa Stream (Landing Road)	Regional Base Line
Various unnamed streams	Natural State
Wainui te Whara Stream	Regional Base Line
Waiewe Stream	Regional Base Line
Wairere Stream	Regional Base Line, Aquatic Ecosystem (d/s Falls)
Whakatāne River	Contact Recreational (u/s bridge)
Kōpeōpeō Canal	Drain Water Quality
Orini Canal	Modified watercourse with ecological values

Table: Whakatāne urban area stream classifications

DW P1 (Policy 38) Discharges of contaminants to water are to comply with the following requirements:

Table DW 1 Contaminant Discharge Requirements

	Receiving	Discharge Requirement
	Environment	
(a)	Lakes	 (i) Direct discharges of contaminants to lakes are discouraged, while allowing for minor discharges that are unlikely to have adverse effects on water quality. (ii) There shall be no net increase of nitrogen or phosphorus in lake catchments. This does not preclude the use of nutrient trading within the same lake catchment to achieve this policy. (iii) Where discharges are made directly to lakes, the discharge is to:
		 Meet the water quality classification of the lake after reasonable mixing.
		 Avoid, remedy or mitigate adverse effects on heritage values and existing users of the lake. This will include implementing appropriate treatment and mixing methods for the discharge.
(b)	Rivers and streams	 Discharges of contaminants to streams and rivers with Water Supply or Natural State (river) water quality classifications are avoided where practicable.
		 Discharges to rivers and streams are to:
		 Meet the water quality classification of the stream or river after reasonable mixing.
		(a) Avoid, remedy or mitigate adverse effects on heritage values and existing users in downstream areas. This may include consideration of appropriate mixing methods for the discharge.
		(iii) For discharges to rivers and streams that are tributaries of lakes, there shall be no net increase of nitrogen or phosphorus in lake catchments. Full regard will be given to the effect on the TLI of the lake, including cumulative effects.
		(iv) For discharges to rivers and streams that flow directly to the open coast, or are tributaries of harbours and estuaries, the effect on the water quality of coastal waters will be given full regard. This includes cumulative effects.
		(v) For discharges to streams that are not shown on the 1:50,000 Water Quality Classification Maps, the discharge shall comply with the Regional Baseline water quality classification as a minimum, subject to an assessment of the appropriate water quality classification in accordance with IM M26. Where the assessment determines an appropriate water quality classification, the discharge will be considered relative to the bidder water quality classification.
		(vi) Where a river or stream has more than one water quality classification along its length, a discharge will be assessed relative to the water quality classification at the point of discharge, as shown on the Water Quality Classification map.
		(vii) The owners or operators of hydroelectric generation dams are required to gain resource consent for the discharge of contaminants associated with dredging activities and extraction of bed materials necessary to maintain the function of the dam. Dam owners and operators are not responsible for contaminants discharged within the catchment above the dam.
(c)	Ephemeral flowpaths	Discharges of contaminants to ephemeral flowpaths will be considered to be discharges to land, or discharges to land where the contaminant may enter water, whichever is appropriate to the individual circumstances.

RESPONSE

Below is a brief technical assessment of the likely compliance of different waterbodies with standards and criteria set in Schedule 9 of the RNRP. The background information supporting this assessment is available in Hamill (2022).

Awatapu Lagoon and Sullivan Lake are "*unspecified water bodies*" and as such have no standards set in Schedule 9. They are, arguably, classed as artificial waterbodies rather than natural lakes. If this is the case, they may fall outside the requirements of both the National Policy Statement for Freshwater Management 2020 and policy DW P1.

River Lake Ltd Page 2 of 8

Hinemoa Stream is the remanent channel of the Wainui Te Whara prior to its diversion directly to what is now Awatapu Lagoon. Much of the channel shown on the BOPRC planning maps is culverted under residential land. The open channel starts at James Street and its catchment is 100% urban residential, the lower section of the stream is tidal and has a saline influence. Almost all of the catchment's water is stormwater plus some unknown amount of groundwater seepage into the stormwater pipes. This makes it very difficult to apply the criteria set in Schedule 9 for Regional Baseline waterbodies or to ascertain what would constitute a 'reasonable mixing zone'. The current state of Hinemoa Stream is poor (see section 3.6 of Hamill (2022)). Past water quality measures have recorded low dissolved oxygen (56% saturation) and median *E.coli* bacteria of 635 cfu/100mL.

Wainui Te Whara Stream is classified as Regional Baseline. Urban stormwater is a small fraction of the catchment (<5%). There are no direct measurements upstream and downstream of individual culverts to assess stormwater discharges against standards in Schedule 9.¹ There has been monitoring of the Wainui Te Whara Stream at Valley Road and Hinemoa Street that gives a comparison of changes in water quality and ecology that occur as the stream travels through the main urban area of Whakatāne, this gives an indication of cumulative effects of discharges in combination with changes in stream habitat, morphology and gradient. There is a general pattern of declining water quality in the Wainui Te Whara Stream between Valley Road and Hinemoa Street, but key variables such as dissolved oxygen and *E.coli* bacteria are within Schedule 9 standards. DGT sampling in 2020 found dissolved Zn elevated above DGVs at King Street (Table 4.7), suggesting a possible contaminant source to the stream at this time. However, generally we expect the stormwater, after reasonable mixing, to comply with Schedule 9 standards.

Waiewe Stream is classified as Regional Baseline. Urban stormwater is a small fraction of the overall catchment (<5%) and presents a low risk to the stream. Sediment monitoring has found Zn to be slightly elevated but still within ANZG DGV values. We expect the stormwater, after reasonable mixing, to generally comply with Schedule 9 standards.

Wairere Stream is classified as Regional Baseline. Urban stormwater is a very small fraction of the overall catchment (<4%) and presents a low risk to the stream. Metals in sediment were low and within ANZG DGVs. The median for four spot samples of *E.coli* bacteria below the waterfall in 2009 was 700 cfu/100ml - which exceeds the microbiological bathing guidelines, but this is likely to be mainly due to runoff from rural land in the catchment. We expect the stormwater, after reasonable mixing, to generally comply with Schedule 9 standards.

The Whakatāne River is classified as Contact Recreation. Urban stormwater is a very small fraction of the overall catchment (<1%). Metals in fine sediment are within ANZEC DGVs and similar upstream and downstream of the town, but there may possibly be small scale localised effects close to stormwater outlets. The lower river (at the Landing Road bridge) does not meet microbial water quality guidelines for swimming (graded "poor"), this is mostly caused by high *E.coli* concentrations coming from upstream during rain events. The median *E.coli* concentration is about 105 cfu/100mL. Baseflow sampling results indicated lower concentrations of *E.coli* downstream of most stormwater outlets compared to upstream (Table 4.4) but the differences

¹ The hospital carpark stormwater outlet has stormwater monitoring but only for some metals.

are small. This may reflect more dilution from sea water at the downstream sites. We expect the stormwater, after reasonable mixing, to generally comply with Schedule 9 standards.

Kōpeōpeō Canal is classified as Drain Water Quality. Urban stormwater is a small fraction of the catchment. Monitoring has found some indication of elevated Zn in stormwater from Gateway Drive, however it is likely that the Zn concentration would have complied with the DGVs after reasonable mixing in the Kōpeōpeō Canal considering the small relative size of the urban catchment (<0.6%) and current state of the canal. We expect the stormwater, after reasonable mixing, to generally comply with Schedule 9 standards.

Orini Canal is classified as Modified watercourse with ecological values. Urban stormwater is a small fraction of the catchment. The stormwater monitoring has found low concentrations of Zn, Cu, Pb and dioxins – and all within guidelines. The stormwater also has very low concentrations of nitrogen. There is no reason to expect that the stormwater is not complying with all Schedule 9 standards.

QUESTION:

Section 9.4.10 of the application implies that the application can be granted in light of Section 107 of the RMA, however, this is not outlined clearly in Section 4 of the Hamill report. Please provide further assessment on Section 107 of the RMA and clearly outline whether, after reasonable mixing, the contaminant or water discharged is likely to give rise to all or any of the matters listed in 107(1)(c)-(g).

107 Restriction on grant of certain discharge permits

- Except as provided in subsection (2), a consent authority shall not grant a discharge permit or a coastal permit to do something that would otherwise contravene section 15 or section 15A allowing—
 - (a) the discharge of a contaminant or water into water; or
 - (b) a discharge of a contaminant onto or into land in circumstances which may result in that contaminant (or any other contaminant emanating as a result of natural processes from that contaminant) entering water; or
 - (ba) the dumping in the coastal marine area from any ship, aircraft, or offshore installation of any waste or other matter that is a contaminant,—

if, after reasonable mixing, the contaminant or water discharged (either by itself or in combination with the same, similar, or other contaminants or water), is likely to give rise to all or any of the following effects in the receiving waters:

- (c) the production of any conspicuous oil or grease films, scums or foams, or floatable or suspended materials:
- (d) any conspicuous change in the colour or visual clarity:
- (e) any emission of objectionable odour:
- (f) the rendering of fresh water unsuitable for consumption by farm animals:
- (g) any significant adverse effects on aquatic life.

RESPONSE

Based on the information available and described in Hamill (2022) it is unlikely that, after reasonable mixing, Whakatāne stormwater will give rise to the effects listed in Sec. 107 c to g.

Staff undertaking stormwater monitoring reported in Opus-WSP (2019) did not observe any of the effects listed in 107 d to e (i.e. relating to conspicuous oils, foams, change in colour or clarity or objectionable odour) (James Gladwin pers. comm. 2023). During wide scale rain events the Whakatāne River is typically more turbid than the stormwater discharges and it is common to observe turbid water from the river entering Awatapu Lagoon and Apanui Canal.

Section 4.3.4 of Hamill (2022) describes that *E. coli* bacteria concentrations can be high during storm events but that faecal source tracking identified the source as wildfowl and possible ruminants. It is unlikely that the Whakatāne stormwater would render freshwater receiving environments unsuitable for consumption by farm animals. The waterways that might possibly be used by farm animals are the Whakatāne River, Wairere Stream, upper Wainui Te Whara Stream and Orini Canal. In all these waterways the effects of Whakatāne stormwater was assessed as negligible or low (Table 4.7 of Hamill 2022).

Similarly, it is unlikely that the Whakatāne stormwater will have significant adverse effects on aquatic life in natural receiving waters. However, as described in Table 4.7 and 4.9 (of Hamill 2022), stormwater may result in "moderate-High" or "High" magnitude of effects on water quality in Apanui Canal, Hinemoa Stream and the Amber Grove drains because almost all of the catchments for these waterways is urban. However, using the Ecological Impact Assessment framework (EcIA) approach (Table 4.9), the overall ecological effect on these waterways is assessed as "low" because of their highly degraded and artificial nature.

QUESTION

In relation to the report titled Whakatane CSC Potential effects on ecology and water quality (Hamill 2023):

- i. In Table 3.8 and 4.9, what does the "*" mean in relation to Sullivan Lake?
- ii. ANZECC and DGV are used together/interchangeably throughout the report, but they are separate guideline documents. ANZG (2018) is the most recent up to date guideline document, whereas ANZECC (2000) has been superseded. Please update the report to ensure the reference used throughout is to the ANZG (2018) document. If ANZECC (2000) still needs to be used within the report, please state that it has been superseded and outline the reasons why it is being used.
- iii. There is a spelling error on page 49, first set of bullets, last bullet point, last sentence "...particularly important to collected...". Please change this to "collect".

RESPONSE

- i. In Table 3.8 and 4.9 the "*" in relation to Sullivan Lake refers to a footnote that read "* = The amenity values of Sullivan Lake are likely 'Moderate', and would improve with better water quality."
- ii. Hamill (2022) makes reference to both ANZECC (2000) and ANZG (2018). ANZECC (2000) is relevant because it is referenced in current plans (e.g. BOP Regional Natural Resources Plan, Schedule 9 (water quality classification and criteria), and previous reports). ANZG (2018) is an updated version of ANZECC (2000), so is more contemporary. For most variables being referenced, the ANZG (2018) DGV equates to the ANZECC (2000) 95 percentile value.
- iii. The typographical error on page 49 is noted, thank you.

QUESTION

In relation to the Whakatane Comprehensive Stormwater Consent Monitoring Plan (Hamill 2019 Draft)

- i. ANZECC and DGV are used interchangeably throughout the monitoring plan, but ANZECC and ANZG are different (but very similar in many triggers) documents. As mentioned above, ANZG (2018) is the most recent up to date guideline document, whereas ANZECC (2000) has been superseded. Please update the monitoring plan to ensure the reference used throughout is to the ANZG (2018) document. If ANZECC (2000) still needs to be used, please state that it has been superseded and outline the reasons why it is being used.
- ii. Table 2.1 states an "annual" monitoring frequency, is this once a year? And is this for a baseline or rainfall event?
- iii. Section 2.3 discusses the proposed frequency of water quality sampling. The review of the draft ecological assessment noted: "Other councils do four baselines in the four seasons and rainfall triggers as well. Compare to consent triggers for exceedances and use an adaptive management approach. E.g., TCC Comp consent requires an investigation (and mitigation) if baseline exceeds trigger at a site in consecutive seasons or a rainfall event is triggered in the same season at the same site in consecutive years. Would be good to include a table of survey sites for water quality monitoring. Could also include regular monitoring of the freshwater and marine receiving environments with higher priority sites surveyed two yearly and less critical sites surveyed every five years." This approach is still recommended as it will enable meaningful and comprehensive data collection and analysis.
- iv. In section 2.4.3, paragraph 4 mentions excess water should be decanted. Does the sampler need more guidance, so the sediment sample isn't compromised/lost to some degree?
- v. In section 2.5.2, paragraph 3 mentions there should be "consideration given for [additional analyses] organic carbon and dry matter" etc. Organic carbon and dry matter should be routinely surveyed in sediment samples.
- vi. In Table 3.2, Cd and Ni are faded out, why is this?

RESPONSE

- i. ANZECC (2000) vs. ANZG (2018). Noted. Please see response to this same question given above.
- ii. Table 2.1 specifies annual sampling (i.e. one a year) of stormwater grab-samples, DGT integrated sampling, and sediment samples. Stormwater grab samples are to be collected during the first flush of a rain event as described in section 2.3.1.
- iii. There are many ways to undertake stormwater monitoring. Stormwater is highly variable both between rain events and within the same rain event. The approach proposed for Whakatāne District Council includes sampling of stormwater when it is usually at its worst (i.e. first flush) and the proposed use of DGT to provide time integrated sampling of metals incorporating rain-events and baseflow between

River Lake Ltd Page 7 of 8

events. In addition, priority waterways are proposed to be monitored for sediment and with DGTs – both of which are time integrative.

- iv. Section 2.4.3 decanting of excess water. We have added the words. "Any loss of sediment shall be minimised." However, in practice losing a small amount of resuspendable sediment has negligible effect on the results. What does make a noticeable difference to sediment results is the depth to which sediment is sampled.
- v. Section 2.5.2, paragraph 3. Organic carbon and dry matter helps with interpretation of sediment data, but it is not critical for a strict comparison with ANZG (2018) DGVs. Nevertheless, we have modified this to be a requirement rather than an option.
- vi. In Table 3.2, Cd and Ni are faded out because they are not proposed to be sampled. They have been deleted from the table to avoid confusion.

Whakatane Comprehensive Stormwater Consent Monitoring Plan: DRAFT

Prepared for:

Whakatāne District Council

Whakatane Comprehensive Stormwater Consent Monitoring Plan

Prepared by:

K. D. Hamill

Prepared for:

Whakatāne District Council

Reviewed by:

Released by:

Keith Hamill

Date:28 August 2019Status:DRAFTReference:wk-1053

River Lake Ltd PO Box 853, Whakatane 3158, New Zealand

 Telephone:
 +64 7 929 5293

 Mobile:
 +64 27 308 7224

 Email:
 keith@riverlake.co.nz

All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with River Lake Ltd.

Contents

1	Intro	duction1
	1.1	Background1
	1.2	Whakatāne stormwater network1
	1.3	Streams and the receiving environment2
	1.4	Stormwater consent monitoring 3
	1.5	Stormwater investigations
2	Mon	itoring programme7
	2.1	Introduction
	2.2	Sites
	2.3	Timing and Frequency
	2.4	Methods
	2.5	Variables to analyse
	2.6	Health and Safety 10
3	Repo	orting and Triggers
	3.1	Triggers
	3.2	Response if triggers are exceeded
	3.3	Reporting
Refe	rences	515
Арр	endix :	L: Stormwater discharge locations16
Арр	endix 2	2: Monitoring location site details18
Арр	endix 3	3: Field sampling methods20
Арр	endix 4	4: Further trigger value explanation22

1 Introduction

1.1 Background

Whakatāne District Council (WDC) is seeking a Comprehensive Stormwater Consent (CSC) to authorise stormwater discharges from Whakatāne, Coastlands and the Hub.

This Draft Stormwater Monitoring Plan has been prepared to support the Stormwater Catchment Management Plan and resource consent process. It is intended that this Draft Stormwater Monitoring Plan is finalised by a suitably qualified person after resource consents are obtained.

The purpose of stormwater monitoring proposed in this plan is to confirm the quality of stormwater being discharged, assess its potential effects on the receiving environment and test compliance against the CSC.

1.2 Whakatāne stormwater network

The Whakatāne Urban Stormwater Catchment includes the Whakatāne Township and central business district (CBD), the coastal development of Coastlands/Piripai and the commercial and industrial areas of the Hub and Gateway Drive (Figure 1.1).

There are three main Stormwater Zones: Apanui (256 ha), Hinemoa (202 ha) and Whakatāne South (256 ha) and six smaller Stormwater Zones: Whitehorse/Melville/Wainui Te Whara (153 ha), Awatapu (45 ha), Mātaatua/Muriwai/Wairaka (59 ha); Coastlands (124 ha); Gateway Drive/the Hub (103 ha), and Wairere (306 ha including rural catchment).

For the purpose of the CSC application, the Whakatāne Urban Stormwater Catchment incorporates all the residential and commercial land in Whakatāne that drains indirectly or directly to the Whakatāne River. Natural waterbodies that receive stormwater discharges are as follows (with the number of stormwater discharge locations in brackets): Whakatāne River (19 downstream of Landing Road Bridge, 23 upstream of Landing Road Bridge), Wainui Te Whara Stream (11), Wairere Stream (2), Waiewe Stream, Awatapu Lagoon (19), Sullivan Lake and Kopeopeo Canal (1).

Natural and modified tributaries that enter the Whakatāne River within the urban boundaries of Whakatāne, include from downstream to upstream¹: Wairere Stream, Waiewe Stream (McAlister Street pump station/gravity flapgate), Orini Canal and Kopeopeo Canal (TL), Hinemoa Street drain, Te Rahu Canal (TL), Wainui Te Whara Stream via Awatapu Lagoon, Waioho Stream (TL) and several unnamed tributaries near the southern urban boundary.

¹ TL = enters the Whakatāne River from the True Left side.

Figure 2.1: Whakatāne stormwater network showing simplified stormwater collection system and open waterways

1.3 Streams and the receiving environment

Ecological values of the stream receiving environment have been assessed in reports by Hamill (2015), Opus (2016), and Opus (2017). A summary of the ecological values of each of the receiving waters is provided below.

Whakatāne River has important ecological, recreational and cultural values. The salt marsh in the lower estuary provides important habitat for fish and birds. The lower section, downstream from Landing Road bridge, is considered in regional plans to be part of the coastal marine area. Daily water levels in this section of river are greatly affected by tidal fluctuations.

Wainui Te Whara Stream originates in the hill country around Mokourua, flows through the town and into Awatapu lagoon from which it enters the Whakatāne River via a fish friendly flap gate. It supports a range of native fish species.

Awatapu Lagoon is a man-made ox-bow lake that was isolated from the Whakatāne River as part of flood protection works in the 1970s. It is 7.7 ha in size and on average 1.7 m deep with a maximum depth of 4.3 m. Water quality in the lagoon improves closer to the outlet where it is tidally connected to the Whakatāne River; overall the nutrient water quality is poor with frequent algae blooms and the presence of nuisance aquatic macrophytes such as parrots feather and hornwort. Awatapu Lagoon nevertheless provides valuable habitat for fish and birds.

Sullivan Lake is a shallow nutrient rich lake. Water quality is poor (classed as hypertrophic) and there are frequent nuisance algae blooms. It is valued as a habitat for waterfowl.

Wairere Stream drains farmland east of Hillcrest and receives only a small amount of urban stormwater.

Waiewe Stream has about 1 km of open stream channel along Waiewe Street, is piped down Hillcrest Road, flows as a waterfall and open stream beside the Hillcrest steps and is piped under the Strand to discharge near the paru flax drying area and connect with the Apanui canal and McAlister Street pump station/gravity flapgate. Peak stormwater flows in this catchment are attenuated by a series of four small dams located in Waiewe Reserve

Apanui canal enters the Whakatāne River via a gravity flap gate and pump stations at McAlister Street and in the Whakatāne rose gardens. It has a completely urban catchment. There is about 1 km of open channel downstream of Pyne Street. Waiewe Stream connects with Apanui canal at the downstream end via the paru flax dying wetland and ponding area. The lower end (downstream of the strand) of Apanui canal is tidal due to the fish friendly flap gate (FFG) and this results in better water quality at the downstream end. Overall the water quality, habitat and ecological values of Apanui canal are poor, but it does support abundant shortfin eel (Opus 2017).

Hinemoa Street drain enters the Whakatāne River upstream of Landing Road bridge, via a gravity flap gate and pump station. It has a completely urban catchment and only about 360m of open channel. Overall, the water quality, habitat and ecological values of Hinemoa Street drain are poor. Shortfin eel and galaxiid species are present but in low abundance (Opus 2017).

1.4 Stormwater consent monitoring

WDC has the following resource consents for discharges of stormwater in Whakatāne that require monitoring:

- The Hub to Kopeopeo Canal (consent 63352)
- The Hub stormwater to Whakatāne River (consent 62713)
- Keepa Road pump station to Whakatāne River (consent 65604)
- Keepa Road settling pond to Orini Canal (RM20-0493, formerly resource consent 66383).

Monitoring requirements at these sites are summarised in Table 1.1 and the summary results are in Table 1.2. Numerical limits in the current consents are set for TSS (<150 mg/L), TPH (<15 mg/L) and pH (between pH 6 and 9).

Table 1.1: Summary of stormwater monitoring requirements on current stormwater consents forWhakatāne.

Consent	Location	Variables	Туре	Frequency	Limits
63352	The Hub to Kopeopeo Canal	TSS, PAH, COD	Four samples at 10 minuite intervals per event	4 times per year	TSS
62713	The Hub to Whakatāne River PS	TSS, PAH, COD	Four samples at 10 minuite intervals per event	Quarterly	TSS
62713	The Hub Board Mill SW manhole	TSS, TPH	First flush	Annual	TSS, TPH
65604	Hub2 PS to Whakatāne River	TSS, TPH, pH	First flush (first 30 min)	4 times per year/ 2 times per year	TSS, TPH
66383	Keepa Rd ponds to Orini Canal	TSS, TPH, pH, Dioxin, TP, TN, Pb, Zn, Cu	First flush (first 30 min)	2 per year	TSS, TPH, pH

Note: Conditions also require compliance with criteria in the RMA Sec 107.

Table 1.2: Summary results of Whakatāne stormwater consent monitoring (dataset for Keepa Road was missing data for 2017 and 2018). Some lab results had unusually high detection limits of total metals.

						Dioxin WHO							
						TEQ upper	PAH	COD	TP	TN	Total	Total	Total
Site	Statistic	n	рΗ	TSS	TPH	(pg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Lead	Zinc	Copper
Guideline				150	15	30					0.012	0.043	0.008
Keepa Rd to Oreni, 66383	Median	6	6.6	6.3	0.7	4.69			0.0885	0.49	0.0009	0.006	0.0021
Keepa Rd to Oreni, 66383	Max.	6	6.8	11	0.7	6.93			0.22	1.09	< 0.0011	<0.021	<0.053
Hub to Kopeopeo Canal, 63352	Median	18		28			< 0.00004	34					
Hub to Kopeopeo Canal, 63352	Max.	18		91			0.00047	200					
Hub to Whak. PS, 62713	Median	28		33.5			0.000018	25					
Hub to Whak. PS, 62713	Max.	28		179			<0.01	230					

Guidelines: TSS in discharge of <150 mg/L (BOPRC). TPH <15 mg/L (MfE Environmental Guidelines for Water Discharges from Petroleum Industry Sites in NZ). Dioxin < 30 pg I-TEQ /L (USEPA). Total metal guidelines are ANZECC trigger for 80% protection in marine waters.

1.5 Stormwater investigations

Tozer (2016) developed a monitoring programme for Whakatāne stormwater, which consisted of eight sampling locations to reflect a range of land use types across the catchment. The following samples were collected:

- Water samples were collected from 17 sites on four occasions during baseflow conditions. This included sampling from the Whakatāne River, Wainui Te Whara Stream, Wairere Stream, Hinemoa Stream, Apanui canal, Awatapu lagoon outlet, Sullivan Lake outlet and six stormwater outlets (Amber Grove, Coastlands, Gateway Drive, Sullivan Lake inlet, Te Tahi Street, and the Hub).
- Water samples were collected from four sites on four occasions during rain events.
- Sediment samples were collected from eight sites on two occasions. This included sampling from the Whakatāne River (three sites), Wainui Te Whara Stream (two sites), Wairere Stream, Apanui canal and the Amber Grove stormwater.

The sampling results were reported in WSP Opus (2019) (Table 1.3 and Table 1.4). The key results were:

- *E. coli* bacteria concentrations were high during storm events. Faecal source tracking of samples from Amber Grove, Apanui canal and Te Tahi Street found that the bacteria were not from a human source, instead the results indicated a wildfowl source and, at some sites, a possible ruminant source.
- Baseflow *E. coli* bacteria were above recreational bathing guidelines at Sullivan Lake and Hinemoa Stream.
- Total cadmium and mercury were within ANZG Default Guideline Values (DGV)² at all sites.
- Median total copper exceeded the ANZECC 80% protection level in baseflow stormwater discharges from Coastlands, Gateway Drive, and also at Amber Grove, Apanui canal and Te Tahi Street during rain events. In natural water bodies, total copper exceeded that 90% protection limit at Hinemoa Street, Wainui Te Whara and in the lower Whakatāne River.
- Median total zinc exceeded the ANZECC 80% protection level in baseflow stormwater discharges from Gateway Drive, and also at Amber Grove, Apanui canal and Te Tahi Street during rain events. The median zinc concentration at Gateway Drive was very high compared to other sites. In natural water bodies, total zinc exceeded that 90% species protection limit at Hinemoa Street and Apanui Stream.
- Median total chromium (III and IV) was within ANZECC 80% protection level at all sites (baseflow and rain event monitoring). In natural waterbodies total chromium was within the ANZECC 90% protection level at all sites. Note that chromium exceeded the ANZECC 95% protection trigger at all sites in part because the trigger level was lower than the laboratory detection limit.
- Median total lead was within the ANZG DGV at all sites during baseflow conditions. However, the ANZECC 90% protection level was exceeded in stormwater from Te Tahi Street during rain events. pH was consistently within the trigger range.
- There were five (marginal) exceedances of the BOPRC 150 mg/L TSS trigger level. In the Wainui Te Whara Stream this was associated with dredging work occurring in the stream at the time.
- All hydrocarbons were below laboratory detection limits.
- Sediment from Apanui canal had Cu, Pb and Zn above the ANZG DGV and Zn above the ANZG DV-high. Sediment from Amber Grove had Zn above the ANZG DGV (Table 1.4).
- High concentrations of total copper or zinc were often associated with high concentrations of suspended solids.
- In general, the highest concentration of total metals in baseflow stormwater was from Gateway Drive.

Key recommendations from WSP Opus (2019) included:

- Maintain *E. coli* monitoring at recreational sites on a quarterly basis. Undertake one-off faecal source tracking for Sullivan Lake and Hinemoa Stream.
- Maintain monitoring of copper, chromium, lead and zinc, TSS, pH, NH4-N, nitrate, TPH on a quarterly basis. Less frequent monitoring might be appropriate for Wainui Te Whara upstream and Wairere Stream.
- Continue sediment sampling for copper, lead and zinc and consider additional inclusion of chromium, cadmium and organic carbon.
- Investigate the possible reasons for relatively high copper and zinc at Gateway Drive stormwater and high copper at Coastlands.
- Apply the ANZECC 90% protection trigger for water quality in natural water receiving environments.

² ANZG (2018) is an update of ANZCC (2000). ANZECC (2000) is referenced in the BOP Regional Natural Resources Plan, Schedule 9. For metal contaminants, the ANZG DGVs are the same as the ANZECC (2000) 95 percentile values. For sediments the ANZG (2018) is the same as the ANZECC DV low.

Note that this monitoring programme has refined some of these recommendations to incorporate more recent methods, focus on stormwater effects, link to actions and integrate with existing monitoring programmes.

Table 1.3: Median water quality from baseflow and rain-event sampling by WSP Opus (2019). Shaded cells indicated exceedance of ANZECC guideline values as follows: >95% protection = blue, >90% protection = green, >80% protection = yellow. Site names in bold are natural waterbodies.

				Total	Total	Total	Total	Total	Total			
			TSS	Cadmium	Chromium	Copper	Lead	Mercury	Zinc	NH4-N	Nitrate-N	E. coli
Site Name	Count	Flow	(g/m3)	(g/m3)	(g/m3)	(g/m3)	(g/m3)	(g/m3)	(g/m3)	(g/m3)	(g/m3)	cfu/100ml
Amber Grove	4	Base	13	0.000053	0.00063	0.00075	0.00055	0.00008	0.01165	0.18	0.12	34
Apanui Canal	4	Base	5.5	0.000053	0.00058	0.000795	0.0003	0.00008	0.0186	0.27	0.21	27
Awatapu Outlet	4	Base	19	0.000053	0.00055	0.00124	0.0007	0.00008	0.0032	0.06	0.21	95
Coastlands	4	Base	4	0.000053	0.000635	0.0037	0.00067	0.00008	0.0063	0.03	0.01	60
Gateway Drive	4	Base	17.5	0.000053	0.00214	0.0043	0.00123	0.00008	0.3435	0.07	0.30	55
Hinemoa Stream	4	Base	3	0.000053	0.00053	0.00235	0.00065	0.00008	0.0465	0.21	1.08	685
Sullivan Lake Inlet	4	Base	13	0.000053	0.000825	0.00145	0.00065	0.00008	0.01455	0.05	0.23	780
Sullivan Lake Outlet	4	Base	10.5	0.000053	0.00053	0.001325	0.0006	0.00008	0.01105	0.010	0.05	225
Te Tahi Street	4	Base	3	0.000053	0.00053	0.00086	0.00026	0.00008	0.0166	0.04	0.30	40
The Hub	3	Base	33	0.00011	0.0011	0.0011	0.00021	0.00008	0.0094	0.12	0.15	10
Wairere Stream	4	Base	3	0.000053	0.00053	0.00053	0.00011	0.00008	0.0015	0.014	0.59	210
Wainui Te Whara Downstream	4	Base	59	0.000053	0.001345	0.001835	0.00177	0.00008	0.0069	0.014	0.40	75
Wainui Te Whara Upstream	4	Base	3	0.000053	0.00053	0.00053	0.00012	0.00008	0.0011	0.010	0.41	52
Whakatane River Downstream	4	Base	12.5	0.00021	0.0019	0.0019	0.0011	0.00008	0.0049	0.021	0.20	50
Whakatane River Bridge	4	Base	17.5	0.0000815	0.0011	0.0011	0.00077	0.00008	0.00325	0.020	0.20	55
Whakatane River Midway	4	Base	52	0.000053	0.00104	0.001515	0.00109	0.00008	0.00475	0.012	0.21	54.5
Whakatane River Upstream	4	Base	17	0.000053	0.00053	0.000595	0.00023	0.00008	0.00135	0.010	0.19	40.5
Amber Grove	4	Rain	17.5	0.000053	0.001545	0.0031	0.00355	0.00008	0.1095	0.07	0.14	3100
Apanui Canal	4	Rain	23	0.0000815	0.00244	0.01015	0.0054	0.00008	0.1435	0.07	0.09	3100
Te Tahi Street	4	Rain	83	0.000138	0.0079	0.0119	0.0084	0.00008	0.307	0.01	0.09	2850
Wainui Te Whara Downstream	3	Rain	17	0.000053	0.00077	0.00153	0.00074	0.00008	0.0127	0.01	0.09	500

Table 1.4: Sediment results from WSP Opus (2019)³

Date	Site	Sediment fraction	Total Copper (mg/kg dw)	Total Lead (mg/kg dw)	Total Zinc (mg/kg dw)
10/08/16	Amber Grove	<2mm	27	37	350
20/11/17	Amber Grove	<63µm	22	23	177
10/08/16	Apanui Canal	<2mm	42	62	400
20/11/17	Apanui Canal	<63µm	121	181	1180
20/11/17	Waiewe Stream	<63µm	15.2	25	164
20/11/17	Wairere Stream	<63µm	6.4	9.5	47
20/11/17	Wainui Te Whara Downstream	<63µm	10.2	12.3	76
10/08/16	Whakatāne River Downstream	<2mm	16.3	12	62
20/11/17	Whakatāne River Downstream	<63µm	15.1	9.9	61
10/08/16	Whakatāne River Midway	<2mm	11.6	8.3	44
20/11/17	Whakatāne River Midway	<63µm	16.2	11.5	63
10/08/16	Whakatāne River Upstream	<2mm	7.6	4.7	29
20/11/17	Whakatāne River Upstream	<63µm	15.7	10.3	60

³ Bolded values are above the ANZG Default Guideline Value (DGV) of copper 65 mg/kg, lead of 50 mg/kg and zinc of 200 mg/kg

2 Monitoring programme

2.1 Introduction

The monitoring proposed in this draft Stormwater Monitoring Plan focuses on collecting stormwater samples, sediment samples and passive DGT samples (diffusive gradient in thin film) of dissolved metal. These are compared to guideline trigger value to determine whether additional management action is required.

2.2 Sites

The locations of proposed sample sites are listed in Table 2.1. The sampling focuses on key waterbodies (Whakatāne River, Wainui Te Whara/Awatapu, Sullivan Lake, Apanui canal), areas with higher risk of stormwater contamination (i.e. the industrial zone near Te Tahi Street and commercial area/CBD draining to Apanui canal), and existing stormwater monitoring.

Apanui canal is classified as an artificial waterway and Hinemoa Stream is classified as a stream, but in practice both waterways have very similar characteristics. Both have almost 100% urban stormwater catchment, both are highly modified, have a tidal influence and support shortfin eel.

ID	Site	Water type	Land use	Sample type	Frequency
Whakatāne South 11	Te Tahi Street	Stormwater	Industrial	Stormwater, DGT	annual
	Te Tahi Street to Sullivan Lake	Stormwater	Industrial	DGT	annual
	Keepa Road to Orini Canal (consent RM20-0493)	Stormwater	Residential	Stormwater	annual
	Gateway Dr to Kopeopeo Canal	Stormwater	Industrial/	Stormwater,	annual
			Commercial	DGT	
	Hub to Kopeopeo Canal (consent	Stormwater	Industrial/	Stormwater	annual
	63352)		Commercial		
	Hub to Whakatāne River PS	Stormwater	Industrial/	Stormwater	annual
	(consent 62713)		Commercial		
Apanui 2	Apanui canal	Stormwater	Commercial /CBD	Sediment, DGT	annual
	Hinemoa Stream	River	Residential	Sediment, DGT	annual
	Wainui Te Whara before	River	Residential	Sediment, DGT	annual
	Awatapu Lagoon				
	Whakatāne River Upstream	River	Rural	Sediment	annual
	Whakatāne River Downstream McAlister St	River	Rural/urban	Sediment	annual

Table 2.1: Sample sites proposed for ongoing monitoring

Note: the site Te Tahi Street to Sullivan Lake has not previously been sampled.

2.3 Timing and Frequency

2.3.1 Stormwater

Stormwater will be sampled at least annually during the first flush of a rain event. The samples shall be representative of the stormwater from the outlet and, where practicable, shall be collected within the first 30 minutes of a rain-event.

Stormwater quality can vary considerably during a rain-event, but generally the highest concentrations occur during a first flush and on a rising flow. Capturing the first flush of a rain event can be challenging and consideration will be given to using passive automatic sampling devices to collect samples at set water level(s) on the rising flow. The practicality of deploying these types of devices depends on the characteristics of individual stormwater outlets.

A long-term integrated sample of stormwater and baseflow events shall be collected using Diffusive Gradient in Thin-film (DGTs) devices (see below). DGTs (or equivalent) shall be deployed annually for a minimum three-week period during the summer/autumn (1 November to 30 May). The deployment period should include at least one /stormwater discharge event.

2.3.2 Sediment in rivers

A single, bulked, sediment sample shall be collected annually.

2.4 Methods

2.4.1 Stormwater grab samples

Samples shall be collected as grab samples from the stormwater drains or outlets. Samples shall be collected by a suitably experienced person. Gloves shall be worn to minimise the risk of sample contamination and to protect the field personnel. The grab sample collection method is described in Appendix B.

If samples are collected using a passive, automatic sampling device, then the devices shall be checked after each significant rain-event to ensure samples are collected from the devices within 24 hours of the event.

The sample shall be chilled, stored in a cool dark chill-bin and sent to the laboratory for analysis. Extra care should be taken of samples for analysis of faecal coliform bacteria. It is critical that these are stored in a cool, dark place and they should arrive at the laboratory for analysis within 24 hours of collection.

2.4.2 DGT sampling devices

DGT devices provide a cost-effective way to measure time-weighted average concentrations of dissolved metals in water. DGTs can be used for measuring concentrations of many metals including Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. They provide results comparable to bioavailable dissolved metal fraction. DGT measures all solution species that are labile (available to biota). They do not measure metals that are incorporated inside mineral particles and are therefore inert or unreactive.

DGTs can be deployed for long periods of time to capture average concentrations over the period. The longer the deployment times, the more metal accumulates and the lower the detection limits. The maximum concentration that can be measured depends on the capacity of the resin.

When deploying DGTs in receiving waters it is appropriate to compare the results with chronic guideline values (e.g. ANZECC guidelines). Procedures for deploying DGTs are described in Appendix B.

2.4.3 Sediment

Samples shall be collected by a suitably trained person. Gloves shall be worn to minimise the risk of sample contamination and to protect the field personnel.

The samples shall be collected from an area of fine sediment deposition in a pool or a run.

The sediment samples shall be collected from the **top 2 cm** of sediment only. Samples shall be collected from a known area using a sediment corer or plastic scoop. A minimum of six cores shall be collected and bulked into a single sample to obtain a sediment volume of about 800 mL. The cores shall be collected over an area covering at least 1 m^2 .

After the sample has been placed in the sample container, any excess free water shall be decanted. Any loss of sediment shall be minimised.

Samples shall be transported in a cool chilli-bin, chilled to 4°C and remain chilled during transport to the laboratory. Samples shall be transported to the laboratory promptly, in accordance with maximum holding times for relevant variables being tested. If sediment samples cannot be sent to the laboratory within 24 hours then they should be frozen.

The area of sediment sampled shall be recorded.

2.5 Variables to analyse

2.5.1 Water and stormwater

The water samples shall be analysed for: total suspended solids (TSS), hardness, chromium (Cr), copper (Cu), zinc (Zn), and lead (Pb). Note that hardness is important for assessing the bioavailability of metals in water samples (particularly Cr, Cu, Zn, and Pb). Water with more saline influence tend to be harder. Hardness may be removed from the analysis suite if a relatively consistent concentration is found after a minimum of six samples from a particular site.

Where DGTs are deployed they shall be analysed for Chromium (Cr), copper (Cu) and zinc (Zn). ⁴

At the time of sample collection field observations shall be made of any films of hydrocarbon on the water. Also, records shall be made of:

• the date and time of sampling.

⁴ WSP OPUS (2018) found that variables were more likely to exceed guideline values in Whakatāne stormwater.

- amount of rain that fell in the previous 1 hour.
- amount of rain that fell in the previous 24 hours.
- conditions at the time of sampling.

The sample analysis shall be carried out by an IANZ accredited laboratory.

Some past and current stormwater discharge consents have included analyse of Total Petroleum Hydrocarbons (TPH) (Consent 66383) or Polycyclic Aromatic Hydrocarbons (PAH) (Consent 63352). TPH is general indicator of the level of contamination by a broad range of hydrocarbon compounds. MfE (1998) set guidelines for the maximum level of TPH allowable in stormwater averaged over an event as 15 mg/L. PAH are a class of semi-Volatile Organic Compounds (VOC). It is not proposed to regularly test stormwater for these variables on a regular basis because TPH and PAH are strongly associated with sediment particles, are typically low in urban stormwater (Kennedy et al. 2016), and have been confirmed in past consent monitoring as being very low of Whakatāne stormwater.

The current consent for the Keepa Road stormwater pond discharge to Orini Canal (Consent 66383) includes analysis for dioxins. The rational was, presumably, because the stormwater ponds is near a site known to be contaminated with dioxins from past dumping of wood waste. We proposed to continue to monitor dioxins from the stormwater for consistency with past monitoring, but note that dioxins from stormwater is considered a low risk because past monitoring has shown the dioxin concentration in the stormwater to be low, dioxins are strongly associated with sediment and the potential source of dioxins is from the capped contaminated site rather than the urban stormwater.

2.5.2 Sediment

The sediment samples shall be analysed for the following variables: total chromium (Cr), total copper (Cu), total lead (Pb), total zinc (Zn) and Polycyclic Aromatic Hydrocarbons (PAHs).

Sample analysis shall be carried out on the fraction of sediment <u>less than 63 microns</u> by an IANZ accredited laboratory. Prior to analysis the sediment samples shall be sieved through a 63 micron filter to remove coarse sands and gravels.

The following additional variables shall be analysed to help with interpretation: organic carbon, dry matter (g/100g), density (g/mL) and wet weight (g). Analysis of dry matter is to allow a conversion from wet weight to dry weight and analysis of density is to convert to sample volume and allow a retrospection confirmation of average depth actually sampled.

2.6 Health and Safety

Samples shall be collected in accordance with Whakatāne District Council Health and Safety procedures, including contact procedures and incident reporting. Contractors undertaking Monitoring shall submit a Health and Safety plan for review by WDC prior to undertaking works.

Potential hazards shall be identified for each regular sample site and contractors undertaking sampling are provided with a copy of the sampling locations and know hazards and risk assessment. Any additional

hazards identified during sampling should be recorded, actions taken to remedy these if required and the risk assessment updated accordingly.

Site specific risks may change due to factors such as time of day and weather conditions. Those undertaking sampling should take appropriate actions to address risks presented for sampling alone, night time sampling, or sampling in adverse weather conditions.

If samples cannot be collected safely than an alternative site (e.g. further upstream), alternative timing (during low flows) or an alternative method should be investigated in consultation with the Project manager.

3 Reporting and Triggers

3.1 Triggers

Water quality guidelines have been set to trigger a response based on the monitoring results. The trigger values based on the DGVs indicate a level to trigger further analysis and monitoring to determine whether aquatic ecosystems are adequately protected. They are a prompt to investigate in more detail, rather than a standard that has to be met.

The triggers are based on the guideline values from ANZECC (2000)⁵, ANZG (2018), USEPA (2006) and BOPRC. Response trigger values have been tailored to reflect whether the sample is from a stormwater discharge or a natural waterway, the quality of the receiving environment and the type of sample as follows:

- For baseflow monitoring (i.e. outside of flood events) of streams and rivers the triggers have been set at the 80% protection level and the 95% protection level depending on the state of the waterbody. These triggers apply to the results from DGT devices in natural waters because the devices integrate results over the whole period of deployment (Table 3.1).
- Rain event monitoring of natural waters is not currently proposed, but if it were to occur the recommended trigger for metals would be the relevant USEPA Criteria Maximum Concentration (CMC) which protects against acute effects. Acute toxicity criteria are used as triggers for intermittent stormwater discharges because the events are generally of very short duration and have considerable dilution with the receiving environment (Table 3.1).
- For stormwater discharges during baseflow conditions, i.e. results of long-term deployment of DGT devices, the triggers have been set at ten times the relevant ANZECC guideline for the receiving water, on the assumption of there being at least ten times dilution. This is an arbitrary but likely conservative assumption for the small stormwater systems under consideration.
- For stormwater discharges during rain-events, the triggers are set at 10 times the USEPA acute CMC value. A response trigger value of 150 mg/L total suspend solids is also applied to stormwater monitoring results based on BOPRC guidelines. This trigger excludes extreme rain events greater than the 10% AEP.

⁵ ANZG (2018) is an update of ANZCC (2000). ANZECC (2000) is referenced in the BOP Regional Natural Resources Plan, Schedule 9. For metal contaminants, the ANZG DGVs are the same as the ANZECC (2000) 95 percentile values. For sediments the ANZG (2018) is the same as the ANZECC DV low.

- For sediment samples from natural systems after reasonable mixing (e.g. Whakatāne River) the trigger is set as the Default Guideline Value (DGV) from ANZG (2018).
- For sediment samples from stormwater systems (e.g. Apanui canal) the trigger is set as the DGV-high from ANZG (2018) (Table 3.2). The GV-high has typically been used as the trigger in previous BOPRC Comprehensive Stormwater Consents (CSC).

The response trigger level for each monitoring site and sample type is shown in Table 3.3 (water quality) and Table 3.4 (sediment).

Table 3.1: Water quality trigger values for receiving water environments from ANZECC (2000) and USEPA (2006). Discharge values based on the US-EPA acute (CMC) assuming a hardness of 30 g/m³.

Trigger values	Fres	shwater (µ	g/L)	Mari	Freshwater		
Metals	ANZEC	C Protectio	n Level	ANZEC	C Protectio	on Level	US-EPA acute
	95%	90%	80%	95%	90%	80%	CMC
Chromium (CrVI)	1	6	40	4.4	20	85	16
Copper	1.4	1.8	2.5	1.3	3	8	4.3
Lead	3.4	5.6	9.4	4.4	6.6	12	17
Zinc	8	15	31	15	23	43	42

Notes

- Water trigger values for dissolved metals Cr, Cu, Pb, Zn, and Cd are based on the US-EPA acute (CMC) assuming a hardness of 30 g/m³. The triggers should be adjusted for actual water hardness (USEPA 2006).
- Chromium (IV) is considerably more toxic than Cr (III), the trigger value provided relates to chromium (III) and so is conservative if total chromium is analysed.

Table 3.2: Sediment trigger values receiving environments (ANZG 2018). Applicable to fine sedimentfraction (<63um) and PAH normalised to 1% organic carbon within the limits of 0.2 to 10%.</td>

Variable	DGV (mg/kg dry wt)	GV-high (mg/kg dry wt)
Total chromium	80	370
Total copper	65	270
Total lead	50	220
Total zinc	200	410
Polycyclic Aromatic Hydrocarbons (PAHs)	10	50

		Cr	Cu	Pb	Zn	TSS	
Site		(μg/L)	(μg/L)	(μg/L)	 (μg/L)	(mg/L)	Trigger rational
Stormwater							
Te Tahi St (WHK south11)	Stormwater	160	43	170	420	150	10x USEPA CMC
Te Tahi St (WHK south11)	DGT	10	14	34	80	150	10x ANZECC 95% level
Te Tahi St to Sullivan Lake	DGT	60	18	56	150	150	10x ANZECC 90% level
Keepa Rd to Orini Canal (Consent 66383)	Stormwater	160	43	170	420	150	10x USEPA CMC
Gateway Dr to Kopeopeo Canal	Stormwater	160	43	170	420	150	10x USEPA CMC
Gateway Dr to Kopeopeo Canal	DGT	60	18	56	150	150	10x ANZECC 90% level
Hub to Kopeopeo Canal (Consent 63352)	Stormwater	160	43	170	420	150	10x USEPA CMC
Hub to Whakatāne Rv PS (Consent 62713)	Stormwater	160	43	170	420	150	10x USEPA CMC
Streams/rivers							
Apanui Canal	DGT	40	2.5	9.4	31	na	ANZECC 80% level
Hinemoa Stream	DGT	40	2.5	9.4	31	na	ANZECC 80% level
Wainui Te Whara before Awatapu Lagoon	DGT	1	1.4	3.4	8	na	ANZECC 95% level

 Table 3.2: Water quality trigger values for each monitoring site and sample type.

 Table 3.2: Sediment trigger values for each monitoring site and sample type.

Sito	Cr	Cu	Pb	Zn	PAH	
Site	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Trigger rational
Apanui Canal	370	270	220	410	50	ANZG GV-High
Hinemoa Stream	80	65	50	200	10	ANZG GDV
Wainui Te Whara before Awatapu Lagoon	80	65	50	200	10	ANZG GDV
Whakatāne River Upstream	80	65	50	200	10	ANZG GDV
Whakatāne River Downstream McAlister St	80	65	50	200	10	ANZG GDV

3.2 Response if triggers are exceeded

If the sampling of either stormwater or sediment has results that exceed the trigger levels⁶ then the permit holder shall initiate the actions set out in the Stormwater Management Plan.

In the event that the results of either stormwater or sediment samples exceed the trigger values then the permit holder shall initiate the actions set out in the Stormwater Management Plan. These actions shall include:

• Notification of BOPRC Consent Compliance officer.

⁶ Triggers to apply at any time except where the 10% Annual Exceedance Probability (AEP) design event is exceeded.

- Investigating potential causes of the exceedance. This may include undertaking contaminant source investigations to identify the source of contaminants.
- If the contamination is likely to be derived from the stormwater network, then initiating appropriate corrective actions to reduce the source of contaminants. These actions may include:
 - Reducing loads at source.
 - Reviewing district plan provisions.
- Re-testing of the discharge following implementation of the corrective actions.
- Reporting the result of any additional monitoring or contaminant source investigation to BOPRC Consent Compliance officer.

3.3 Reporting

3.3.1 Annual reporting

The result of stormwater and sediment sampling shall be reported to the Consents Compliance officer, Bay of Plenty Regional Council annually (or as required by the CSC consent). The report shall include:

- The location of sample site.
- The date and time of sampling or DGT deployment period.
- Rainfall in the 1-hour and 24-hour period prior to water sampling.
- Daily rainfall during DGT deployment period.
- Area of sediment sampled and depth sampled, size of corer and number of replicate cores. The actual depth sampled shall be check by using a calculation that divides wet weight by sediment density, and divides this by the sample area.
- Results of sample analysis.
- A comparison of the results with ANZECC guideline trigger values, ISQG-high, ISQG-low, and triggers set in the consent.
- An assessment of the quality of discharges and implications of the discharges on the receiving environment.

3.3.2 Six yearly review and reporting

The appropriateness of the stormwater monitoring programme shall be reviewed at least every six years⁷ and sent to the Consents Compliance Manager, Bay of Plenty Regional Council. The review shall include:

- A summary of all previous stormwater monitoring data for the sites.
- A summary of any past exceedances and actions taken.
- Assessment of whether any trends or patterns are apparent.
- An assessment of the effectiveness of the monitoring method and recommendations for any changes to the monitoring methods, variables or sites.
- An assessment of the appropriateness of trigger values whether they need to be revised.
- An assessment of any at risk catchments and recommendations regarding potential mitigation or revision of the Catchment Management Plan.

⁷ Six year reviews corresponds with the LTP process with the first review in 2024.

References

- ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at <u>www.waterquality.gov.au/anz-guidelines</u>
- ANZECC 2000. Australian and New Zealand guidelines for fresh and marine water quality. Vol. 1 and 2. (2000): Australian and New Zealand Environment and Conservation Council, Canberra, ACT, Australia.
- Hamill, K. 2015. *Wainui Te Whara Stream survey 2015*. Prepared for Whakatāne District Council by River Lake Ltd.
- Kennedy, P., Allen, G. and Wilson, N. (2016). *The management of hydrocarbons in stormwater runoff: a literature review.* Prepared by Golder Associates (NZ) Limited for Auckland Council. Auckland Council technical report, TR 2016/010
- MfE 1998. Environmental Guidelines for Water Discharges from Petroleum Industry Sites in New Zealand. Prepared by a Joint Working Group of the Ministry for the Environment, local authorities and petroleum marketing companies. ISBN 0-478-09047-1
- Opus International Consultants 2016. *Stormwater Catchment Management Plan*. Prepared for Whakatāne District Council by Opus International Consultants.
- Opus 2017. Whakatāne Stormwater Catchment Management Plan. Ecological values assessment Hinemoa Stream and Apanui Stream. Prepared for Whakatāne District Council by P Deegan, Opus International Consultants.
- Park, S. 2009. *Bay of Plenty Marine Sediment Contaminants Survey 2008*. Environment Bay of Plenty Environmental Publication 2009/01.
- Tozer, C. 2016. *Comprehensive stormwater monitoring update*. Memo to Inka Krawczyk from Clive Tozer, Opus International Consultants, 14 November 2016.
- USEPA 2006. *National recommended water quality criteria for toxic pollutants*. United States Environmental Protection Agency.
- WSP Opus 2019. Stormwater monitoring report. Prepared for Whakatāne District Council by J. Gladwin, SWP Opus International Consultants, March 2019.

Appendix 1: Stormwater discharge locations

Figure 1: Whakatāne stormwater discharge locations

Figure 2: Whakatāne stormwater discharge locations, north.

Figure 3: Whakatāne stormwater discharge locations, south.

Appendix 2: Monitoring location site details

Sample site:	
Sub-catchment:	
Site description and access:	
Grid reference:	
Hazards:	
Water depth:	Tidal influence:
Monitoring type:	
Monitoring Frequency:	
	Photo
Sample site:	
Sub-catchment:	
Site description and access:	
Grid reference:	
Hazards:	
Water depth:	Tidal influence:
Monitoring type:	
Monitoring Frequency:	
	Photo
Sample site:	
Sub-catchment:	
Site description and access:	
Grid reference:	
Hazards:	
Water depth:	Tidal influence:
Monitoring type:	

Monitoring Frequency:		
		Photo
Sample site:		
Sub-catchment:		
Site description and access:		
Grid reference:		
Hazards:		
Water depth:	Tidal influence:	
Monitoring type:		
Monitoring Frequency:		
		Photo
Sample site:		
Sub-catchment:		
Site description and access:		
Grid reference:		
Hazards:		
Water depth:	Tidal influence:	
Monitoring type:		
Monitoring Frequency:		
		Photo

Appendix 3: Field sampling methods

Water quality grab samples

Sample containers shall remain unopened until time of sampling. Lids shall be placed upright, and the inside of the bottle, including the lid, should not be touched to avoid the potential for contamination.

Samples shall be collected directly into the prescribed container. Sample containers should NOT be rinsed to ensure any preservatives (e.g. for metal analysis) are not washed out.

Surface water samples shall be collected from about 5cm below the water surface, utilising a suitable device able to recover samples from a designated depth and prevent ingress of surface water. Samples containing preservatives shall be filled to maximum capacity, those not containing preservatives filled to overflowing. Sampling for analysis of TPH shall comprise a sweep across the water surface.

Care is needed to avoid potential contamination of the sample during sample collection. Sample containers shall be held at the base, and the bottle neck plunged downward below the surface. The bottle shall be turned until the neck points slightly upward and the mouth is directed toward the current. If there is no current, a current is artificially created by pushing the bottle forward horizontally in a direction away from the hand. Care shall be taken to avoid contact or disturbance of the bank or stream bed as this may cause fouling of the water and sample.

If more than one sample is to be collected from the same watercourse (e.g. open drain, stream), sampling shall commence at the location furthest downstream, and work upstream in turn.

Samples shall be transported in a cool chilli-bin, chilled to 4°C and remain chilled during transport to the laboratory. Samples shall be transported to the laboratory promptly, in accordance with maximum holding times for relevant variables being tested.

Passive Samplers (DGTs, diffusive gradient in thin film)

Procedures from DGT Research (<u>www.dgtresearch.com/guides-to-using-dgt/</u>)

Handling

- Store DGT units in a refrigerator prior to use and within a plastic bag. Ensure they remain in a moist environment.
- Do not remove from the sealed plastic bag until immediately (minutes) prior to deployment.
- Only get hold of the DGT unit with clean hands.
- Do not touch the white filter at the face of the unit and do not let it come into contact with anything else.

Deployment

• Having placed the DGT unit in its holder or attached it to any deployment device through the hole on the unit using any fishing line, deploy the unit immediately (minutes).

- Ensure the unit is deployed in flowing (or moving) water, but avoid excessive turbulence, particularly bubbles.
- Ensure that the white face of the DGT unit is fully immersed during the deployment period.
- Provide an accurate record to the nearest minute of the deployment time and the temperature of the water during the deployment time. If the variation is within + 2oC a mean (or start and end temperature) will suffice. If the variation is greater, ideally the mean temperature should be obtained from an integrated record of temperature (data logger or chart recorder).

Retrieval

- On retrieval of the holder remove the DGT unit immediately (minutes), taking care not to touch the face filter.
- Rinse the DGT unit with a wash bottle stream of distilled/deionised water and shake off obvious surface water (do not dry it).
- Place in the clean plastic bag provided and seal with minimum air space. Mark on the bag. Store it in a refrigerator.

Appendix 4: Further trigger value explanation

Sediment

Filtering sediments according to particle size has an important effect on the metal concentration. The ANZG (2018) recommends applying the revised default guideline values for toxicants in sediment' to the <63 um sediment fraction.

Previously, the ANZECC (2000) guidelines applied to whole sediment fractions but particles >2mm (e.g. gravels) are usually not a source of bioavailable contaminants. The silt/clay fraction (<63 um) is more likely to absorb heavy metal contaminants. Because of this it is common to normalise contaminant analysis on the basis of the clay/silt fraction. Sieving is usually undertaken to remove unrepresentative particles greater than 1-2 mm in size (e.g. rocks, shells) that might distort the analyses. However, monitoring programmes differ as to whether they focus on the <2mm fraction, <500 micron fraction or the less than 63 micron fraction. BOPRC coastal estuarine surveys are based on the <500um sediment fraction (Park 2009).

ANZG (2018), in the 'revised default guideline values for toxicants in sediment', specifies a default guideline value (DGV) and a Guideline Value – High (GV-high). The GV-high represents the median value of the effects ranking while the DGV is based on a no-observed-effects level (NOEL). As such, GV-high could be considered as more likely to be associated with biological effects than the DGV but the extent of that impact is not necessarily known.

Thus, the GV-high is recommended for use as an indicator of potential high-level toxicity problems, and the DGV is recommended as a guideline value to ensure protection of ecosystems. If a DGV is exceeded than a multiple lines-of-evidence approach is recommended to better assess the risk to a sediment ecosystem.

Type of toxicant	Toxicant	DGV	GV-high
Metals (mg/kg dry weight)a	Antimony	2	25
	Cadmium	1.5	10
	Chromium	80	370
	Copper	65	270
	Lead	50	220
	Mercury	0.15	1
	Nickel	21	52
	Silver	1	4
	Zinc	200	410

Table xx: ANZG (2018) default guideline values for sediment quality. Applicable to fine sediment fraction (<63um) and normalised to 1% OC within the limits of 0.2 to 10%.

Stormwater

Regional water quality classification standards and criteria reference ANZECC water quality guidelines (2000) for assessing potential adverse effects on aquatic life. ANZECC guidelines are based around continuous, long-term (chronic) exposure conditions, as opposed to the intermittent, relatively short-term (acute) exposure conditions associated with storm events. Because stormwater events are intermittent, the use of chronic guidelines values for assessing the potential for stormwater toxicants on aquatic life will tend to be overly conservative (i.e. too cautious). This may result in implementing contaminant mitigation measures that are unnecessary from an effects basis.

The US EPA water quality criteria for toxicants provide guideline concentrations for both chronic and acute exposure events (US EPA 2002). Chronic and acute guideline concentrations are referred to as criterion continuous concentrations (CCC) and criterion maximum concentrations (CMC), respectively. The CMC provides a better indication of acute effects and are appropriate to compare with short term declines in water quality during stormwater events; while the CCC (or the ANZECC guideline values) provide a better indication of chronic effects and are appropriate to compare with average or baseline monitoring results.