

DISCLAIMER

This report has been prepared by the Institute of Geological and Nuclear Sciences Limited (GNS Science) exclusively for and under contract to Bay of Plenty Regional Council. Unless otherwise agreed in writing by GNS Science, GNS Science accepts no responsibility for any use of or reliance on any contents of this report by any person other than Bay of Plenty Regional Council and shall not be liable to any person other than Bay of Plenty Regional Council, on any ground, for any loss, damage or expense arising from such use or reliance.

Use of Data:

Client consent required to use data.

BIBLIOGRAPHIC REFERENCE

Sajkowski L, Houghton KM, Mountain BW, Burnell JG. 2022. Effects of reinjecting diluted mineral pool water into the Rotorua Geothermal System. Wairakei: GNS Science. 60 p. Consultancy Report 2022/18.

CONTENTS

EXE	CUTIVE	E SUMMARY	III
1.0	PAR	T 1: GEOCHEMISTRY	1
	1.1	Introduction	1
	1.2	The Model	3
		1.2.1 Methodology	3
		1.2.2 Temperature	4
		1.2.3 Reinjection Rate	4
		1.2.4 Distance from the Reinjection Point	5
		1.2.5 Fluid Compositions	6
	1.3	Descriptions of Model Scenarios	9
	1.4	Model Results	10
		1.4.1 Reinjection into a 120°C Aquifer	10
		1.4.2 Reinjection into a 150°C Aquifer	15
	1.5	Limitations of the Study	19
	1.6	Conclusions	19
2.0	PAR	T 2: MICROBIOLOGY	21
	2.1	Introduction	21
	2.2	Pathogens in Bathing Water	21
		2.2.1 Heat Treatment, D Values and Sterilisation Methods	
	2.3	Rotorua Geothermal Water in Mineral Pools	26
	2.4	Chemical Changes Induced by Microorganisms	27
	2.5	Conclusions	29
3.0	REC	OMMENDATIONS	30
4.0	REF	ERENCES	31
			-

FIGURES

Figure 1.1	Locations of currently monitored sites in the RGS by BOPRC.	2
Figure 1.2	A simplified diagram showing the flow path of the geothermal brine	3
Figure 1.3	Production fluid temperature in Rotorua	4
Figure 1.4	Maximum discharge rates by well consented in Rotorua	5
Figure 1.5	Model of dispersion of a tracer injected into the RGS	6
Figure 1.6	Example of an aeration pool (aeration tank) in Rotorua.	8
Figure 1.7	The conceptual flow chart of the model	9
Figure 1.8	Concentration (mg kg ⁻¹) of B (a,b) and Cl (c,d) versus distance (m) from a reinjection well at a reservoir temperature of 120°C at four reinjection rates (t day ⁻¹)	11
Figure 1.9	pH at temperature (pHt) (a,b), temperature (c), and silica concentration (d) versus distance (m from the reinjection well at a reservoir temperature of 120° C at four reinjection rates.) 13
Figure 1.10	Ca (a,b), HCO_3 (c), and H_2S (d) concentration versus distance (m) from the reinjection well at reservoir temperature of 120°C at four reinjection rates.	a 14
Figure 1.11	a) Mineral saturation index versus reinjection rate calculated using GWB	15
Figure 1.12	Concentration (mg kg ⁻¹) of B (a) and Cl (c) versus distance (m) from the reinjection well at reservoir temperature (150°C) for all reinjection rates	16

Figure 1.13	pHt (a), temperature (c), and silica concentration (d) versus distance (meter) from the reinjection
	well at the reservoir temperature of 150°C17
Figure 1.14	Ca (a) and HCO_3 (c) changes versus distance (meter) from a reinjection well at reservoir
	temperature (150°C)17
Figure 1.15	a) Mineral saturation index versus reinjection rate calculated using GWB18

TABLES

Table 1.1	Conversion of injection flow rates used in this study.	5
Table 1.2	Town water composition used in this work.	6
Table 1.3	RR1021 well chemistry composition from 6 February 2019	7
Table 1.4	Aquifer composition recalculated in GWB® using RR1021 well chemistry	8
Table 2.1	Potential microbial hazards in mineral bathing pools ¹	22
Table 2.2	Heat resistance values of common contaminants.	24
Table 2.3	Consented Rotorua geothermal takes used for mineral pools with high potential for microbial contamination	27
Table 2.4	Major microbiological taxa identified at Kuirau Park sites	.28

APPENDICES

APPENDIX 1	TOWN WATER COMPOSITION	37
APPENDIX 2	COMPOSITION OF WELL RR1021	44
APPENDIX 3	WATCH OUTPUT FILE FOR WELL RR1021	46
APPENDIX 4	ANALYSES OF AERATION POOL WATER	50
APPENDIX 5	GWB OUTPUT FILE – RECALCULATED IN GWB SOFTWARE COMPOSITION OF THE RESERVOIR AT 120°C AND 150°C	53

APPENDIX FIGURES

Figure A1.1	Rotorua Environmental Laboratory Analysis Report	.37
Figure A1.2	Hill Laboratories Certificate of Analysis – 18 December 2020	.38
Figure A4.1	Hill Laboratories Certificate of Analysis – 11 August 2021	.50

EXECUTIVE SUMMARY

This report presents the results of a geochemical modelling study into the potential effects of reinjection of dilute geothermal brine (i.e. dilution by bathing waters) into the shallow groundwater of the Rotorua Geothermal System (RGS). It also summarises the potential environmental effects from reinjection or discharge to surface waters; from both the release of pathogenic microorganisms, and the potential for biochemical changes to the environment by microbes.

The results of this study show that reinjection will have a small effect on the water composition of the shallow geothermal aquifer fluid proportional to the reinjection rate. At reinjection rates of 50 and 100 t day⁻¹ (both at fluid temperatures of 120°C and 150°C) changes to the aquifer chemistry are minimal. Changes in the concentration of conservative elements will be insignificant as these are modelled to be within the \pm 2% uncertainty of the aquifer brine composition. The effect on the aquifer chemistry is less notable when undiluted brine is reinjected.

A measurable change in pH (from pH = 7.7 up to 8.1) is found only at 800 t day⁻¹ up to 800 m from the well. There will be a substantial decrease in the SiO₂ concentration (at 150°C from 275 mg kg⁻¹ to 125 mg kg⁻¹) at reinjection rates of 300 and 800 t day⁻¹ which could impact surrounding wells and surface geothermal features. The decreases in SiO₂ concentration are dependent both on mixing and temperature due to re-equilibration with silica minerals.

Less mineral precipitates are expected when injecting diluted brine compared to undiluted brine at 120°C. For example, at a reinjection rate of 800 t day⁻¹ almost four times more calcite will be precipitated with undiluted brine compered to diluted brine. The amount of calcite precipitates expected at 150°C is large, particularly at 800 t day⁻¹, and this could pose an issue for long-term injectability.

It is also worth to note that extraction of the geothermal brine and subsequent boiling results in loss of water vapour. The lost of water results in an increase of concentration of most dissolved components (e.g. Cl, SiO₂) in the bathing fluid. Therefore, dilution of the geothermal brine with the town water, equivalent of the steam loss, brings the concentrations of components closer to a natural state before boiling occurred.

Reinjection of water from mineral pools, or discharge to surface waters, poses a risk of release of human pathogens. Pathogens may infiltrate groundwater or surface water and present a hazard through inhalation, skin contact, or ingestion of contaminated food. Microorganisms identified in nearby surface features indicate that there may also be environmental risks from the natural geothermal microbial populations. These range from increased biofilm formation leading to reduced permeability, to the production of toxic and corrosive H_2S . The gradient of risk depends on the types of microorganism, volumes and dilutions of water reinjected, and the receiving environment.

The following recommendations are made:

- 1. A geothermal tracer test can be conducted to determine connectivity between the production well, reinjection wells, and surface features.
- 2. Repeat the modelling using a larger range of fluid chemistries that represent other parts of the RGS.
- 3. The results do not consider long-term effects on the aquifer temperature (i.e. cooling). A separate modelling study should be undertaken if long term changes to the aquifer and connected surface feature temperatures are required.
- 4. Water from mineral pools should be monitored for the presence of pathogens, and appropriately treated before reinjection or discharge to surface water.

This page left intentionally blank.

1.0 PART 1: GEOCHEMISTRY

1.1 Introduction

The Rotorua Geothermal System (RGS) is a globally unique geothermal system that has been extensively utilised over last 50 years. The RGS, like other geothermal systems in the Rotorua-Taupō area, is a product of large-scale volcanism and rifting. It is coincident within a modern city in which brine extraction is occurring and numerous surface manifestations are found including geysers, hot springs, mud pools and pots, and warm ground (Scott et al. 2016).

Only the shallow Rotorua geothermal aquifer has been used for extraction, therefore, the RGS brine composition is known only from shallow commercial wells and natural springs. No deep wells (+ 500 m) have been drilled in the RGS thus the precise composition of the deep fluid is not well known (Scott et al. 2021). The shallow fluid chemistry is inhomogeneous and varies throughout the RGS (Scott et al. 2016). According to the different in fluid chemistries, the RGS can be divided into three separate zones: Kuirau Park in the north-west; Ngāpuna in north-east; and Whakarewarewa in the south (Figure 1.1).

Bay of Plenty Regional Council (BOPRC) has commissioned GNS Science (GNS) to investigate potential chemical, biological and physical effects of reinjection of diluted geothermal brine into the shallow part (100–300 m depth) of the Rotorua Geothermal System (RGS). Geothermal brine is used extensively in the RGS as a source of fluid for bathing in motels, hotels, public pools, and private pools. It is common practice for geothermal brine to be diluted with town water in order to cool it down for bathing purposes. The diluted fluid is then reinjected into the RGS.

The goal of the present study is to investigate the geochemical and biological effects reinjecting diluted brine on the RGS. The outcome of this work will broaden the knowledge on potential effects of reinjection and will help inform decisions on sustainable management.

Figure 1.1 Locations of currently monitored sites in the RGS by BOPRC.

1.2 The Model

1.2.1 Methodology

In order to investigate the physical and chemical effects of reinjection of diluted geothermal brine on the aquifer fluid and surface features, we use multicomponent reaction modelling. The software tool REACT (Geochemist's Workbench[®] 2021) was employed to simulate multicomponent reactions (i.e. fluid mixing). The presented model is idealised but is considered representative of the reinjection process in the RGS.

The model is divided into three steps. Each step represents part of the brine flow-path (Figure 1.2). The first step is the extraction of the brine, at aquifer temperature and pressure, from the production well and boiled at atmospheric pressure where it loses most of its non-condensable gases (mainly CO_2 and H_2S). The boiled fluid is further aerated to remove any remaining toxic H_2S . In the next step, the degassed fluid is mixed with town water. For purpose of this study a ratio of brine to town water of 1:1 (the highest ratio) has been used. This mixture comprises the bathing pool fluid (40°C). The residence time of the pool fluid is set to four hours. The final step is the reinjection of the diluted brine back into the aquifer via a reinjection well where it mixes with the original geothermal brine. This three-step model has some limitations which are discussed below.

Figure 1.2 A simplified diagram showing the flow path of the geothermal brine as it is extracted and degassed, mixed with town supply and used for bathing, followed by reinjection back into the aquifer.

1.2.2 Temperature

Production wells of the RGS are characterised by a range of temperatures, with a minimum of ~30°C and up to a maximum of ~160°C. The average production temperature is 110°C (Figure 1.3). For the purpose of this study, two representative temperatures of aquifer fluid have been selected: 120°C and 150°C. Lower temperatures (< 100°C) have been omitted from this study, as at these low temperatures silicate mineral reactions are generally too slow to induce any significant changes in chemistry of fluid.

A reinjection temperature of 40°C is assumed. The temperature of mixed reinjection fluid and the aquifer fluid is calculated using the heat and mass balance equation:

$$\left(\frac{\omega_i}{\omega_i + \omega_{res}} \times H_i\right) + \left(\frac{\omega_{res}}{\omega_i + \omega_{res}} \times H_{res}\right) = H_{i+res} \tag{1}$$

where ω_i is a mass flow of reinjection fluid, ω_{res} of aquifer fluid, H_i is an enthalpy of reinjection fluid and H_{res} of the aquifer fluid.

Figure 1.3 Production fluid temperature in Rotorua (data supplied by BOPRC).

1.2.3 Reinjection Rate

Consented maximum mass discharge values have been used to model the reinjection rates as there are no measurements of actual fluid reinjection rates available. The consented values are up to 800 tonne day⁻¹ and as low as 50 tonne day⁻¹ (Figure 1.4). Note that, the actual reinjection rates might be lower than the consented values. The following discharge rates have been considered in the model: 50, 100, 300 and 800 tonne day⁻¹.

1.2.4 Distance from the Reinjection Point

Water chemistry in the aquifer will depend on the amount of mixing that occurs between the reinjected fluids and the aquifer water. We expect that more mixing will occur as the reinjected fluids move away from the reinjection point.

However, it is not trivial to predict the spatial mixing of the two fluids. The dynamics of mixing is dependent on the flow rates of the fluids and the permeability of the aquifer including width, spacing, and orientation of fractures. For this reason, some assumptions are necessary.

Previous numerical modelling has shown that the majority of the RGS fluid flows from the south to the north at a flow rate of 10 kg sec⁻¹ (Burnell 2020). Therefore, if the reinjection rate of the pool fluid is 10 kg sec⁻¹ then the mixing ratio is the assumed maximum value of 1:1. Whereas, if injection rate was equal 50 tonnes day⁻¹ (~0.6 kg sec⁻¹) the mixing ratio has is 1:17 (Table 1.1).

Injectio	on Rate	Ratio	
tonne day ⁻¹	kg sec ⁻¹	Injection fluid: Aquifer Fluid	
800	9.26	1:1	
300	3.47	1:3	
100	1.16	1:9	
50	0.58	1:17	

Table 1.1Conversion of injection flow rates used in this study. It has been assumed that the aquifer flow rate
is 10 kg sec $^{-1}$ (~800 ton day $^{-1}$).

The direction of flow of the aquifer fluid and the reinjected brine is dependent on the local geology. However, for this study it has been assumed that the aquifer and reinjected fluid mixture travel in one direction.

To estimate mixing rates with distance from the reinjection point, we use a previously developed model of tracer dispersion in the RGS that was employed by Burnell (2020) (Figure 1.5). We assume that the injected fluid can be considered to behave similar to a tracer and will follow this dilution model.

1.2.5 Fluid Compositions

1.2.5.1 Town Supply

In this study town supply water was used to dilute the geothermal fluid in the ratio 1:1 (town water : geothermal fluid). The town supply composition is characterised by low cation and anion concentrations and a near neutral pH (Table 1.2). The complete analysis of the town supply is listed in Appendix 1.

Ana	alyte	Town Water
pН		7.3
Chloride	mg L ⁻¹	5.4
Sulphate	mg L ⁻¹	2.8
Calcium	mg L ⁻¹	2.3
Boron	mg L ⁻¹	0.01
Sodium	mg L ⁻¹	10.01

Table 1.2	Town water composition used in this work. Further details in Appendix 1
	1 11

1.2.5.2 Geothermal Brine

The RGS is tapped by series of shallow production and reinjection wells. The majority of wells are located in the north part of Rotorua City (Figure 1.1). The individual fluid compositions of these bores are variable and depends on local geology and the depth of the well. The purpose of this study was to examine a hypothetical scenario of reinjection which can be applied to the whole RGS. Hence, for the purposes of this study, the chemistry of a production well RR1021 has been employed (Table 1.3). Well RR1021 is located in Government Gardens. The well has a long history of regular sampling and shows a stable composition. It has been assumed that the fluid from this well is near equilibrium with respect to production and natural recharge (Mroczek et al. 2011).

Analyte		Measured	WATCH
pН		8.3	8.5
Chloride	mg L ⁻¹	379	414
Sulphate	mg L ⁻¹	46	50
Calcium	mg L ⁻¹	8.7	9.5
Boron	mg L ⁻¹	5.5	6.0
Sodium	mg L ⁻¹	482	527
SiO ₂	mg L ⁻¹	285	312

Table 1.3RR1021 well chemistry composition from 6 February 2019 (complete details in Appendix 2) and
composition obtained from WATCH after boiling to 100°C (Appendix 3).

1.2.5.3 Mineral Pool Fluid

The mineral pool fluid is derived from flushed geothermal brine. In the chemical model the geothermal brine utilised is assumed to have the composition of well RR1021. In order to obtain the input boiled brine chemistry, it is necessary to adjust the composition for boiling to 100° C.

The recent chemical analysis for selected components in well RR1021 is available (Table 1.3 and Appendix 2). This sample was collected at the wellhead pressure of ~3 bar using a separator. The mineral pool is filled with brine that has boiled to 100° C. In order to obtain its composition, the software programme WATCH was used to simulate the boiling of the fluid from 3 bar and 145°C to 1 bar and 100°C (Appendix 3). The results for selected components are shown in Table 1.3.

After boiling to 100° C, the brine passes to the aeration pool, an example of which is pictured in Figure 1.6. In this pool the concentrations of H₂S and CO₂ are reduced, and temperature decreases due to aeration. Examples of the chemical composition of the aeration pool water is shown are Appendix 4. Assuming the highest efficiency of aeration, the lowest value for H₂S from that analysis (11.5 mg L⁻¹) has been used in the modelling. The concentrations of the remaining analytes from the analysis in Appendix 4 was not used due to lack of information on its exact sampling location. Instead, the concentrations of these analytes generated in WATCH were used.

Figure 1.6 Example of an aeration pool (aeration tank) in Rotorua.

1.2.5.4 The Aquifer Fluid

As shown in Figure 1.3, the temperatures of the shallow aquifer (reservoir) in the RGS are variable. These are mostly dependent on the depth of the well and its location. For deeper wells (~130 m) temperatures reach 150°C (Scott et al. 2021). In this study, two reservoir temperatures (120°C and 150°C) have been considered.

The chemical composition of the aquifer fluid also changes across the RGS. Due to this variability, it is challenging to select one representative brine composition for the whole RGS. The composition of the RR1021 fluid has been employed, because of availability of quality of data and relatively long history of sampling. It is also assumed that the reservoir fluid (at 120°C and 150°C) is at chemical equilibrium with reservoir rock mineralogy and not supersaturated with respect to common rock-forming minerals. Using the above assumptions, the compositions of the reservoir fluid at both temperatures have been calculated using REACT. These are shown in Table 1.4 and listed in detail in Appendix 5.

Analyte		120°C	150°C
рН		7.7	7.7
Chloride	mg L ⁻¹	371	371
Sulphate	mg L ⁻¹	45	45
Calcium	mg L ⁻¹	1.6	0.7
Boron	mg L ⁻¹	5.4	5.4
Sodium	mg L ⁻¹	472	472
SiO ₂	mg L ⁻¹	184	272

Table 1.4	Aquifer composition recalculated	in GWB® using RR1021 wel	I chemistry (details in Appendix 5).
-----------	----------------------------------	--------------------------	--------------------------------------

1.3 Descriptions of Model Scenarios

For each scenario run with the model (Figure 1.7), the following steps were taken:

- 1. Calculate the initial composition of the boiled geothermal brine (Fluid A) using WATCH.
- 2. a) Mix boiled geothermal brine with town supply (Fluid B) in 1:1 ratio using *GWB*[®] to give pool water composition (Fluid C); b) reference scenario with no dilution (i.e. no town water is mixed with geothermal brine) using town supply.
- 3. Mix pool water (Fluid C) back into reservoir fluid (Fluid D) at required ratios (Table 1.1) which results in Fluid E.
- 4. Re-dilution of Fluid E further away from the injection point with Fluid D.

Figure 1.7 The conceptual flow chart of the model.

Additional assumptions include:

- 1. There is no mineral precipitation in the mineral pool fluid (Fluid C).
- 2. The reservoir fluid (Fluid D) is in chemical and thermal equilibrium with the aquifer at 120°C or 150°C.
- 3. Only the minerals anhydrite (CaSO₄), amorphous silica (SiO₂), calcite (CaCO₃), cristobalite (SiO₂), pyrite (FeS₂) and Ca-Saponite clay (Ca_{0.165}Mg₃Al_{0.33}Si_{3.67}O₁₀(OH)₂) are considered as possible precipitates in the reservoir.

1.4 Model Results

1.4.1 Reinjection into a 120°C Aquifer

1.4.1.1 Conservative Elements

Geothermal brines contain many different dissolved components. Some of these are often considered as conservative (e.g. Cl). Conservative elements do not take part in mineral reactions and their concentrations remain unchanged except during processes such as boiling and mixing. For example, the proportions of mixing of diluted mineral pool fluid (low Cl concentration) with reservoir fluid (high Cl concentration) can be determined based on the mixed fluid's Cl concentration.

Figure 1.8 shows the CI and B concentration changes during reinjection of diluted fluid and, for comparison, undiluted geothermal brine (Figure 1.8b,d) versus the distance from reinjection point. At distance 0 m, the fluid is a mixture of reinjection fluid and aquifer fluid presented as Fluid E on the Figure 1.7. The dotted line shows the original reservoir concentration $\pm 2\%$ uncertainty (dashed lines). It is assumed that all calculated concentrations falling within $\pm 2\%$ of the original concentration are the same within uncertainty.

The results show that injection of diluted brine at rate 50 and 100 t day⁻¹ results in little change to the reservoir fluid composition. At injection rates of 300 t day⁻¹ and 800 t day⁻¹, when diluted fluid is reinjected, the composition change of the reservoir is considerable for both CI and B. At 300 t day⁻¹ and 800 m from the reinjection point, the mixed composition lies slightly below the original brine. At 800 t day⁻¹ the mixed composition is noticeable below the original and it will take another several hundred of meters for the brine to reach the original composition. For the injection of undiluted geothermal brine at all rates there are no significant changes in reservoir composition > 800 m from the reinjection point.

Figure 1.8 Concentration (mg kg⁻¹) of B (a,b) and Cl (c,d) versus distance (m) from a reinjection well at a reservoir temperature of 120°C at four reinjection rates (t day⁻¹). The left diagrams show the results for diluted brine and the right diagrams are for undiluted brine. Dotted lines are the original reservoir composition. Dashed lines are ± 2% of this concentration.

1.4.1.2 Non-conservative Elements

The concentrations of non-conservative species are altered due to changes in temperature, pH, fluid mixing and fluid-rock interaction. Such changes can induce mineral precipitation and/or mineral dissolution. For example, dissolved SiO_2 concentration can increase or decrease depending on the temperature of the fluid as it equilibrates with silica minerals. Dissolved cations such as Na, K, or Ca or gases (e.g. H_2S , CO_2) can also be non-conservative. In order to determine the behaviour of non-conservative species it is necessary to model changes in temperature, pH, and fluid composition due to mixing or fluid-rock interaction.

In the present model, it has been assumed that the aquifer fluid, when cooled down by reinjection of diluted brine, is not reheated by the reservoir rock and only gains temperature by mixing with further hotter reservoir fluid. Figure 1.9 shows the modelled temperature, pH, and SiO_2 concentration changes with the distance from the reinjection point at the four injection rates. It is possible that reheating of the aquifer by the reservoir rock would minimise the SiO_2 concentration changes and enhance calcite precipitation.

The results show that a measurable pH increase (+ 0.25 log units) will occur only at 800 t day⁻¹ and only adjacent to the rejection well (Figure 1.9a,b). In the remaining cases, the pH shift is approximately +0.1 log units. This is likely to be close to the estimated errors given the challenges of calculating highly accurate pH values under these conditions.

In contrast, the temperature of the mixed fluid will decrease significantly, especially at reinjection rate of 300 and 800 t day⁻¹ (Figure 1.9c). Also affected are the concentrations of dissolved species. For example, mixing the diluted brine with the reservoir fluid causes a decrease in SiO₂ concentration (Figure 1.9d). The change in temperature also causes SiO₂ to re-equilibrate with the silicate phases which also results in an additional decrease. The temperature of the reservoir may change over a long distance and thus affect the surrounding features.

distance from the injection well / meters

Figure 1.9 pH at temperature (pHt) (a,b), temperature (c), and silica concentration (d) versus distance (m) from the reinjection well at a aquifer temperature of 120°C at four reinjection rates. For comparison, reinjection of undiluted geothermal is shown in (b).

Ca concentration is also dependent on changes in temperature and fluid composition. This is due to its concentration being controlled by Ca-bearing minerals. In the present model these are calcite, anhydrite, and Ca-saponite. The results show that during diluted fluid reinjection, Ca concentration should increase (Figure 1.10a), however, this does not consider the saturation state of Ca-bearing minerals.

Figure 1.11a and b show the saturation state of the minerals considered in this study and Figure 1.11c and d show the calculated amount of these minerals in grams per tonne of fluid reinjected.

The results show that the diluted brine, when mixed with the aquifer fluid, becomes slightly oversaturated with respect to calcite and cristobalite, and oversaturated with respect to Ca-saponite and pyrite (Figure 1.11a). A similar result is found when undiluted brine is reinjected, however the saturation indices for these minerals are higher (Figure 1.11b).

Oversaturation with respect to some minerals indicates that these minerals will precipitate. Because of the low temperature (120°C), the precipitation rates will be slow. Nevertheless, the small changes in concentration mean that the amount of precipitated minerals is minor. The estimated maximum amount of precipitated mineral is for calcite is 0.24 g t⁻¹ brine at a reinjection rate of 100 t day⁻¹ (Figure 1.11c). For the undiluted brine, a much larger amount of calcite is precipitated because of the brine's higher Ca concentration. Maximum calcite precipitated of 8.5 g t⁻¹ brine occurs at a reinjection rate of 800 t day⁻¹ while 0.8 g t⁻¹ brine is precipitated at a reinjection rate of 50 t day⁻¹ (Figure 1.11d).

The reinjected fluid (either diluted or not diluted) has a lower concentration of HCO_3 and H_2S when compared to the aquifer fluid. This results in a decrease in concentrations of these species which is most notable at high injection rates (Figure 1.10c,d). The lowering in concentration of these species indicates that there might be an impact on acid-sulphide features which depends on H_2S presence in the aquifer.

Because pyrite is highly insoluble at the pH values encountered, the small amounts of Fe and H_2S in the mixed fluid would result in pyrite precipitation (Figure 1.11c). The presence of Al, Ca and SiO₂ in the mixed fluid also indicates that Ca-saponite clay precipitation is also expected (Figure 1.11c). However, the amounts of these two minerals is minor, both with the diluted and undiluted brine.

Figure 1.10 Ca (a,b), HCO₃ (c), and H₂S (d) concentration versus distance (m) from the reinjection well at an aquifer temperature of 120°C at four reinjection rates. For comparison, the effect on Ca of the reinjection of undiluted geothermal is shown in (b).

Figure 1.11 a,b) Mineral saturation index versus reinjection rate calculated using GWB. The fluid is saturated with respect to a mineral when its saturation index is greater than zero (dashed line) and undersaturated when less than zero. c,d) Calculated mass of precipitated minerals in grams per tonne of brine.

1.4.2 Reinjection into a 150°C Aquifer

1.4.2.1 Conservative Elements

Figure 1.12 shows the CI and B concentrations during reinjection of diluted and undiluted brine (no town water) versus distance from the reinjection well. The dotted line shows the original aquifer concentrations. The dashed lines are $\pm 2\%$ of the aquifer concentration, considered the uncertainty.

Because the concentration of conservative species is not dependent on temperature, the concentration profiles of these species are the same as those modelled at 120° C. As before, only at high reinjection rates (300 tonne day⁻¹ and above) are large changes observed (for example decrease in concentration of Cl⁻ by 77 mg L⁻¹).

Figure 1.12 Concentration (mg kg⁻¹) of B (a) and Cl (c) versus distance (m) from the reinjection well at aquifer temperature (150°C) for all reinjection rates. For comparison, the effect on B (b) and Cl (d) is shown for undiluted brine.

1.4.2.2 Non-conservative Elements

The concentration of non-conservative elements will be affected by changes in temperature and pH, and by mineral precipitation or dissolution. As at 120°C, at 150°C calculated pH change will be measurable only at 800 t day⁻¹ and only near the rejection well (Figure 1.13a,b).

Figure 1.13c shows the temperature profile versus distance from the reinjection well. Substantial decreases in temperature are observed especially at 300 and 800 t day⁻¹ reinjection rate (for example drop to temperature below 100°C at 800 t day⁻¹). Decreases in SiO₂ concentration also result from reinjection (Figure 1.13d).

Figure 1.13 pHt (a), temperature (c), and silica concentration (d) versus distance (meter) from the reinjection well at the aquifer temperature of 150°C. For comparison, the effect on pHt (b) is shown for undiluted brine.

Figure 1.14 shows the effect of reinjection of diluted brine on Ca, HCO_3 and H_2S concentrations, as well as that for Ca with undiluted brine. The Ca concentration is lower at 150°C as calcite solubility is lower at the higher temperature. HCO_3 and H_2S appear unaffected as the amount of calcite and pyrite precipitated is small and does not greatly affect their concentrations.

GNS Science Consultancy Report 2022/18

Figure 1.15a shows that when diluted brine mixes with the re aquifer fluid the mixture is slightly oversaturated with respect to calcite and significantly oversaturated with respect to Ca-saponite. When undiluted brine is reinjected, calcite saturation is marginally higher (Figure 1.15b). The calculated amounts of precipitated minerals are shown in Figure 1.15c and d. With diluted brine, the only noteworthy precipitate is calcite ranging from 0.5 g t⁻¹ brine at reinjection rates of 50 t day⁻¹ to 2 g t⁻¹ brine at reinjection rates of 800 t day⁻¹. With undiluted geothermal brine the amount of calcite is considerably higher with about 1 g t⁻¹ brine at reinjection rates of 50 t day⁻¹ to 8 g t⁻¹ brine at reinjection rates of 800 t day⁻¹. This is 2–4 times greater than undiluted brine. This shows that with diluted brine at the high temperature there is considerably more calcite precipitated, 25 g to 1600 g per tonne of brine reinjected. The latter is a substantial amount of calcite; however, it is not clear exactly where this would precipitate within the aquifer and will depend of the permeability and fracture network around the well. These precipitates may reduce permeability around the well over time.

The amounts of Ca-saponite and pyrite are lower as these minerals have a higher solubility at higher temperature (Figure 1.15d).

Figure 1.15 a,b) Mineral saturation index versus reinjection rate calculated using GWB. The fluid is saturated with respect to a mineral when its saturation index is greater than zero (dashed line) and undersaturated when less than zero. c,d) Calculated mass of precipitated minerals in grams per tonne of brine.

1.5 Limitations of the Study

The present geochemical model is representative of only one combination of chemistries, however, it does give a measure of the effect of reinjection. There following limitations should be considered when interpreting the model results: The geothermal brine chemistry can vary within the RGS and this will affect the amount of minerals expected to precipitate. Note, that it is not possible to predict where exactly the precipitate will occur. If the respective brine chemistries are different, the model would have to be modified.

- 1. It has been assumed that the reservoir fluid flows at 10 kg sec⁻¹ towards the north This is a reasonable assumption, however, there are parts of the RGS where the flow rate differs. A different flow rate will result in a different proportion of mixing and will also affect the results.
- 2. The geochemical model assumes that the proportion of reservoir fluid during flow and mixing will increase with distance from the well. However, the degree of mixing is dependent on local geology and permeability.
- 3. Modelling the long-term temperature change in the reservoir was not part of this study. The present geochemical model assumes that sufficient heat is provided by the flowing reservoir fluid to maintain a temperature equilibrium.

The results from this modelling approach provide a reasonable understanding into the likely effects on the reservoir due to reinjection of brine. Note, however, to increase confidence in the predictions, or to target a specific brine combination, additional chemical data and further modelling are required.

1.6 Conclusions

The results of this study show that:

- 1. Reinjection of the diluted fluid will have an effect on the composition of the reservoir fluid with the impact being proportional to the reinjection rate.
- 2. At reinjection rates of 50 and 100 t day⁻¹ (both at 120°C and 150°C) changes to the reservoir chemistry are minimal.
- 3. Changes in the concentration of conservative elements (Cl, B) will be insignificant as these are within the ± 2% uncertainty of the reservoir brine composition.
- 4. For conservative elements, the effect of reinjection on the geochemistry is even less notable when undiluted brine is reinjected.
- 5. In most cases the pH change of the reservoir fluid is minor (~0.1 log units) and is independent of reinjection rate, fluid type or reservoir temperature.
- 6. The only measurable change in pH will be at 800 t day⁻¹ up to 800 m from the well.
- 7. There will be a major decrease in SiO₂ concentration at 300 and 800 t day⁻¹ which could impact surrounding wells and surface features.
- 8. The decreases in SiO₂ concentration are dependent both on mixing and temperature due to re-equilibration with silica minerals (at 150°C from 275 mg kg⁻¹ to 125 mg kg⁻¹).
- 9. At both 120°C and 150°C, when injecting diluted brine, less mineral precipitates are expected than when injecting the same amount of undiluted brine (for example, at 800 t day⁻¹ almost four times less of calcite will be precipitated).

10. The amount of calcite precipitation expected at 150°C is substantial, particularly at 800 t day⁻¹ of undiluted brine (6736 g per day) and could pose an issue for long-term injectability.

The geochemical model suggests that at a mixing ratio of 1:1 brine to town supply, and at slow to moderate injection rates ($\leq 100 \text{ t day}^{-1}$), there will be minimal effect on the reservoir. However, when the reinjection rate is greater ($\geq 300 \text{ t day}^{-1}$) there could be noticeable changes in reservoir fluid composition. These would be expected to be more notable near the reinjection well. It is also worth to note that extraction of the geothermal brine and subsequent boiling results in loss of water vapour. The lost of water results in an increase of concentration of most dissolved components (e.g. Cl, SiO₂) in the bathing fluid. Therefore, dilution of the geothermal brine with the town water brings the concentrations of components closer to a natural state before boiling occurred. The amount of added town water must be equal to water lost as steam.

2.0 PART 2: MICROBIOLOGY

2.1 Introduction

This Section outlines the potential environmental impacts of reinjecting bathing pool water or discharging bathing pool water to surface water, based on the microbiology of the pool water. There are two possible groups of adverse effects; the release of pathogenic microorganisms into the reinjection site and surrounding environment, and the potential for chemical changes induced by microorganisms. Social and cultural concerns are out of scope for this report. While drinking water sources are generally safeguarded through the use of source protection zones and filtration, it is important to note that pathogens may be harmful not only in drinking water but also in water used for irrigation, recreation or when interacting with surface water connected to mahinga kai. The aim of this report is to allow the development of a risk matrix for the treatment or disposal of post-bathing water, depending on the microorganisms present and the site chosen for reinjection or discharge.

2.2 Pathogens in Bathing Water

Most of the risk of infection associated with geothermal mineral pools is due to faecal contamination of the water, either from residual faecal material from bathers' bodies, from contaminated source water, or from birds and rodents. These enteric pathogens may be bacterial, viral or protozoan in origin (Table 2.1) (World Health Organisation 2006). Enteric viruses are a particular risk, as they are excreted in high numbers (up to 10⁻¹¹ viral particles per gram of faeces) and many have a low infectious dose (10–100 particles) (Horn et al. 2016). Viruses cannot reproduce in water without host cells but can be very stable in the environment.

Bathers may also contaminate waters and the surfaces of objects by shedding non-faecal pathogenic organisms, particularly bacteria, viruses and fungi, which may lead to skin and other infections. In addition, some free-living bacteria and amoebae can grow in natural mineral waters as well as wet surfaces in heating and air-conditioning systems (World Health Organisation 2006).

Most bathing pool developments are required to monitor at least *E. coli* and *Enterococcus*, often known as faecal indicator bacteria or FIB (EPA 2012). The control of bacteria and viruses in mineral pools is usually achieved through filtration, disinfection with chlorine or other antimicrobial agents, or temporary pH adjustments. However, some pathogens such as *Pseudomonas aeruginosa*, *Cryptosporidium* and *Giardia* are resistant to disinfectants (World Health Organisation 2006), and an accidental faecal release with high pathogen contamination of the water may not be controlled by normal disinfectant levels. In these cases, heat treatment may be applied in order to decontaminate water.

Pathogen	Illness	Health	Transmission	Likelihood
		Significance	Pathway ²	of Infection ³
Bacteria				
Campylobacter spp.* 4	Gastroenteritis, fever	High	Ingestion	Moderate
Enterococci* ⁵	Bloody diarrhoea, abdominal cramp, respiratory illness	High	Ingestion	Low
Escherichia coli * (pathogenic strains)	Bloody diarrhoea, abdominal cramp	Moderate	Ingestion	High
Legionella spp.	Pneumonia, gastroenteritis	High	Inhalation	Low
Leptospira spp.	Fever, headache, vomiting, jaundice	Moderate	Ingestion, contact	Low
Mycobacterium spp. Respiratory disease, pneumonia, skin diseases		Moderate	Inhalation, contact	Low
Pseudomonas spp. Ear infections, skin diseases		Low	Contact	High
Salmonella spp.* Gastroenteritis		High	Ingestion	Low
Shigella spp.*	Bloody diarrhoea, abdominal cramp	Moderate	Ingestion	Moderate
Staphylococcus spp. Ear infections, skin rashes, wound infections		Low	Contact	Moderate
Viruses				
Adenoviruses* Gastroenteritis, respiratory disease, conjunctivitis		High	Ingestion, inhalation	High
Enteroviruses*	5* Gastroenteritis, respiratory infections		Ingestion	High
Hepatitis A*	Liver disease	High	Ingestion	Moderate
Molluscipoxvirus	Skin diseases, warts	Low	Contact	Moderate
Noroviruses (Norwalk viruses)*	Diarrhoea, vomiting	High	Ingestion	High
Papillomavirus Plantar warts		Low	Contact	High
Rotavirus	Gastroenteritis	High	Ingestion	High
Protozoa				
Acanthamoeba spp.	Universally fatal granulomatous encephalitis, corneal inflammation	High	Ingestion	Low
Cryptosporidium spp.*	Diarrhoea, abdominal pain, fever	High	Ingestion	High
Entamoeba histolytica	Amoebic dysentery	High	Ingestion	High
Giardia spp.*	Diarrhoea, abdominal cramp	High	Ingestion	High
Naegleria fowleri	Almost invariably fatal amoebic meningoencephalitis	High	Contact	Low
Fungi				
Epidermophyton spp.	Athlete's foot	Low	Contact	Moderate
Trichophyton spp.	Athlete's foot	Low	Contact	Moderate

Table 2.1 Potential microbial hazards in mineral bathing pools¹ spp., multiple species.

1 Data taken from (World Health Organisation 2006; NHMRC 2008; Tiwari et al. 2021).

2 The amount of water ingested by swimmers and bathers will depend upon a range of factors, including age, experience, skill and type of activity. Inhalation exposure will be largely associated with aerosols, within a hot tub (for example), or where there is significant splashing. Contact may involve water coming into contact with skin, mucus membranes or cuts in the skin, or physical contact with wet surfaces, edges of pools, shared towels etc.

3 Likelihood of infection depends on the number of organisms needed for an infectious dose, as well as length and type of transmission and the age and health status of individuals.

4 * May be faecally-derived.

5 Enterococci is defined as "members of the genus Enterococcus that show growth at least between 10°C and 45°C, at pH 9.6 and at 6.5% NaCl; are able to reduce 0.1% methylene blue; and show resistance to 60°C for 30 minutes" (World Health Organisation 2009). However, as the most common faecally-derived organisms also fulfil these criteria, the terms "enterococci", "intestinal enterococci", "the Enterococcus group" or "faecal streptococci", are in practice interchangeable.

2.2.1 Heat Treatment, D Values and Sterilisation Methods

D values are used to indicate the heat resistance of contaminants, which is the time needed at a specific temperature in order to kill 90% of the organisms. *D* values for viruses indicate a reduction of at least 3 log units for complete inactivation (Bozkurt et al. 2015), associated with an acceptable risk reduction for human contact. Table 2.2 shows *D* values for common contaminants, including faecally-derived pathogens, in mineral pools. Bacteria, protozoa, and fungi often produce resting stages such as spores and cysts, which are more resistant to heat and other stresses than active cells. D values for these resting stages have been included in Table 2.2 where known.

The exposure of microorganisms for a short time to temperatures above their maximum growth temperature is known as heat shock. If the heat shock is not lethal, it can lead to tolerance of more severe stress (Richter et al. 2010). After repeated heat shocks, strains of *Legionella pneumophila* were heat resistant to 70°C with up to 85% of cells viable after 60 minutes at this temperature (Allegra et al. 2011). Many bacteria, including faecal coliforms, show not only recovery but increased growth after heat shock (Davenport et al. 1976). The abundance of *Vermamoeba vermiformis*, a known *Legionella* host, also increased after heat shock (Ji et al. 2018). Resistance to heat shock is highest during the stationary phase of growth (White 1953), which would be expected for pathogens sitting in thermal pools for prolonged periods.

Recovery after heat shock depends on a range of environmental factors, including temperature, nutrient availability, alkalinity and the presence of trace elements such as AI, Mo and Sb (García-Gil et al. 2018). Resistance to heat shock is difficult to predict and is organism-dependent.

Bacterium/Bacterial Groups	Temperature (°C)	<i>D</i> range or maximum (minutes)	Reference	
	55	0.2–3.2		
	60	0–0.5		
Campylobacter jejuni/coli	65	0–0.9	(Sörqvist 2003)	
	72	0–0		
	55	3.7–146.9		
	60	1.1–43.2		
Enterococcus faecalis	65	0.3–12.9	(Sörqvist 2003)	
	72	0.1–2.4		
	55	17.4–232.8		
	60	5.3–69.4		
Enterococcus faecium	65	1.6–20.9	(Sörqvist 2003)	
	72	0.3–4		
	55	0.9–22.3		
	60	0.1–3.2		
Escherichia coli	65	0–0.5	(Sörqvist 2003)	
	72	0–0		
Legionella pneumophila	58	18	(Dennis et al. 1984)	
Legionella spp.	80	2.1	(Stout et al. 1986)	
Mycobacterium paratuberculosis	72	0.25	(Juffs and Deeth 2007)	
	60	> 30		
Pseudomonas aeruginosa (cells)	80	5–30		
Pseudomonas aeruginosa (biofilms)	60	> 30	(Ricker et al. 2018)	
	80	> 30		
	55	1.1–12.9		
	60	0.1–1.4		
Salmonella spp.	65	0–0.2	(Sörqvist 2003)	
	72	0–0		
Shigella sonnei	65	0.2	(Spinks et al. 2006)	
	50	104–128		
Staphylococcus aureus	55	13–21	(Kennedy et al. 2005)	
	60	4.8–6.6		
Streptococcus faecalis	60	2.5-> 30	(White 1953)	
Adenovirus 5	70	21	(Maheshwari et al. 2004)	
Enteroviruses	60	30	(Mocé-Llivina et al. 2003)	
	50	56.2–385		
	60	2.7–74.6		
Hepatitis A virus	70	1.1–3.8	(Bozkurt et al. 2015)	
	85	1.0	· · · · · · · · · · · · · · · · · · ·	
	100	0.3		

Table 2.2Heat resistance values of common contaminants.

Bacterium/Bacterial Groups	Temperature (°C)	<i>D</i> range or maximum (minutes)	Reference
Human norovirus (Norwalk) Gl.1	60	> 30	(Horn et al. 2016)
	56	100	
	63	25	
Human norovirus GII	72	3.3	(Bozkurt et al. 2015)
	85	1.1	
	100	0.3	
	71	18.3	
	76	9.3	
Acanthamoeba sp.	81	7.4	(Gabriel and Panaligan 2020)
	86	4.5	
	91	1.8	
	60	5	(5
Cryptosporidium parvum	72	1	(Fayer 1994)
<u>O'andia</u>	56	15	(Sauch et al. 1991)
Giardia	70	15	(Ongerth et al. 1989)
	51	25–120	
	55	7.5–75	(Oh
Naegiena spp. (cells and cysis)	63	0.5–9	(Chang 1978)
	65	< 0.5–3	
Trichophyton mentagrophytes	80	4	(Fasian et al. 2000)
Trichophyton rubrum	80	3.2	(Essien et al. 2009)
Epidermophyton floccosum	80	4.4	(Essien et al. 2009)

Reinjection of post-bathing water poses a potential hazard to the environment if pathogens are not eliminated. Depending on the temperature of the receiving geothermal reservoir, the ratio of water reinjected and the estimated residence time, pathogens could be inactivated by heat. However, this would need exposure to a suitably high temperature for a long enough period to kill the majority of pathogens. For example, more than two minutes at 90°C is required if *Acanthamoebae* are present, or heating to 100°C if Noroviruses or Hepatitis A virus are present. The risk from pathogens will be lower if water is reinjected into zones where temperatures and flow paths have been previously measured or modelled at higher temperatures (> 100°C). Concentrations of microorganisms will be naturally attenuated through processes including dispersal and dilution, soil filtration and adsorption, and die-off, although microbes may also multiply if conditions are conducive to growth.

The pH of the receiving environment is unlikely to assist in the control of pathogens. While the optimum pH of most pathogens is generally from neutral to mildly alkaline (in line with their hosts), many are resistant to at least short periods of more extreme pH. Food borne or enteric pathogens are acid resistant in order to cope with exposure to gastric acid (pH 1.5 to 5) in the human digestive system. These include the bacteria *M. paratuberculosis*, *E. coli*, *S. aureus* and *Streptococcus* and *Salmonella* species (Audia et al. 2001; Cotter and Hill 2003). Resistance to low pH increases with concentration of cells, starvation, and being in a stationary phase or in a biofilm (Cotter and Hill 2003). In addition, many viruses are also resistant to low pH (Lee et al. 2015).

For alkaline conditions, the outlook is more promising. High pH (pH > 10.5) has been shown to kill some bacterial pathogens, including *S. aureus*, *E.coli* and *Salmonella typhimurium* (Mendonca et al. 1994), as well as the amoeba *N. fowleri* (Sykora et al. 1983). However, compounds which increase pH to this level are often corrosive and may have unintended effects on the environment. For example, if water from the geothermal reservoir mixes with groundwater, the effect of an increase in pH on the naturally present microbes which provide essential ecosystem services such as denitrification (conversion of nitrate to dinitrogen gas) is not known.

Other methods of sterilisation could include treatment with UV or disinfectants, although some viruses are resistant to UV (Bozkurt et al. 2015), and *Acanthamoebae* are resistant to chlorine (Gabriel and Panaligan 2020). *P. aeruginosa*, *Cryptosporidium* and *Giardia* are resistant to several disinfectants (World Health Organisation 2006), and again, the downstream effects of these compounds are not known.

Filtration has been shown to be highly effective in an Australian hot spring bathing facility where post-bathing water is filtered before being reinjected, removing *E. coli* and *Pseudomonas* which were the only pathogens identified (Aburto-Medina et al. 2020).

2.3 Rotorua Geothermal Water in Mineral Pools

Geothermal takes for thermal pools often have outflow temperatures conducive to pathogenic microbial growth. In the Rotorua area, several consented geothermal takes were identified which currently discharge post-bathing water potentially contaminated with pathogens into surface water or reinject it into the geothermal system (Table 2.3). The microbial risk from these discharges will depend on the number of bathers, volume of water used each day and the ratio of geothermal water to town water. Consented takes which currently discharge into sewers where water will be transported to a Waste Water Treatment Plant are not considered here. There will also be customary takes not requiring a consent which are not recorded here.

In addition, other sites which reinject post-bathing water into geothermal systems may pose a risk if the mean residence times of microorganisms at temperatures below their *D*-value allow continued growth or survival until infiltration into groundwater or surface water. The distance microbial pathogens may travel could be modelled if geological and hydrological data is available for the reinjection area.

There has been some research done on the transport of viruses through groundwater in e.g. alluvial sand and gravel (Pang et al. 2021). There are also national guidelines on separation distances for wells from potential contamination (Moore et al. 2010) and methods for determining capture zones based on either set distances or time-of-travel (Moreau et al. 2014), which may assist with risk assessment and mitigation.

Consent	Location	Well Number	Mineral Pool Discharge Temperature (°C)	Maximum Consented Discharge (m³/day)	Geothermal Water in Outflow (%)	Current Discharge Site
RM17-0752	The Boulevard Motel	RR872	37–42	45	25	Soak hole
66393	1 Kuirau St	RR447/ BN20-0094	37–42	2	50	Soakage trench
67531	Spa Lodge	BN20-0103	37–42	20	50	Soakage trench
67177	Aura Accommodation	RR10649	42–47	25	50	Stormwater
RM18-0384	Polynesian Spa	RR887, RR1067, RR12184, BN19-0156	37–42	300	100	Lake Rotorua
RM20-0571	QE Health and Wellness Spa	RR858, RR1012, RR12751	40	800	75	Reinjection/ WWTP
68238	Cosy Cottage Thermal Holiday Park	RR1000014	37–42	43.2	100	Stream

Table 2.3Consented Rotorua geothermal takes used for mineral pools with high potential for microbial
contamination (outflow temperature < 60°C (data supplied by BOPRC).</th>

2.4 Chemical Changes Induced by Microorganisms

Geothermal water is not sterile, harbouring natural microbial communities which includes a diversity of non-harmful microorganisms as well as potential pathogens. Many mineral waters used for bathing are not filtered or otherwise treated in order to protect the natural physical and chemical properties of the water and their therapeutic effects (Valeriani et al. 2018). If this is the case with the proposed source for re-injection, the natural microbes present and their potential effects need to be considered.

During reinjection of geothermal water, microbial metabolism may result in bio-clogging, reducing the hydraulic conductivity by several orders of magnitude (Feng et al. 2021). This has halted operations in several geothermal plants around the world (Filippidou et al. 2016; Croese 2018b; Dinkel et al. 2018). Bio-clogging may be caused by an accumulation of cells into a biofilm, held together by extracellular polysaccharides (EPS); or by precipitation of carbonates or iron hydroxides by bacteria (Vetter et al. 2010; Feng et al. 2021). These processes are mediated by a range of bacteria and are affected by temperature, pH, nutrient availability, and redox status as well as the type of bedrock surrounding the reservoir.

Although the specific microbial communities of the takes in this project are not known, the microbial diversity of a large number of geothermal springs in the Kuirau Park has been previously investigated (One Thousand Springs 2013), and these surface feature populations may be used as a proxy for bathing pools. The major taxa (none pathogenic to humans) found in 25 sites close to the monitoring sites RRF913 and RRF0601 are shown in Table 2.4. These sites covered a range of temperature ($22-97^{\circ}C$) and pH (1.38-8.72).

Bacterial/Archaeal Species or Group	Known Metabolism	Specific Issues
Acidithiobacillus	Sulphur, sulphide, ferrous iron	Produces H ₂ SO4, corrodes concrete
Alkalibacter	Fermentation	Produces H ₂ , CO ₂
Aquifex	Sulphur, thiosulphate	Produces H ₂ S
Thiobacter	Sulphur, thiosulphate, sulphide	Produces H ₂ S
Caldisericum	Sulphur, sulphite, tetrathionate	-
Cryptomonadaceae	Photolithotrophy	-
Desulfurella	Sulphur, thiosulphate	Produces H ₂ S, CO ₂
Fervidicoccus	Peptides	-
Hydrogenobacter	H2-O2-CO2	-
Hydrogenobaculum	H2-O2-CO2	-
Hydrogenophilus	H2-CO2, organic acids	-
Hydrotalea	Heterotrophy	Forms biofilms
Ignavibacterium	Fermentation	Forms biofilms
Methylomonas	Methane oxidation	-
Micrococcineae	Probably saprotrophic (detritus)	-
Ohtaekwangia	Heterotrophic	Forms biofilms
Peptoniphilus	Peptone	-
Persephonella	Sulphur, thiosulphate, H2	Produces H ₂ S
Salinisphaera	Thiosulphate, CO ₂ , organic acids	Produces H ₂ S
Sediminibacterium	Heterotrophic	Forms biofilms
Sideroxydans	Ferrous iron	-
Sphingobacteriales	Heterotrophic	Produces H ₂ S, forms biofilms
Sulfurihydrogenibium	Sulphur, thiosulphate, CO ₂	Produces H ₂ S
Sulfurimonas	Sulphur, thiosulphate, sulphide, sulphite, H_2	Produces H ₂ S, sulphate
Thermodesulfobacterium	Sulphate, H ₂	Produces H ₂ S
Thermogymnomonas	Heterotrophic	-
Thermoplasmata	Sulphur	-
Thermus	Heterotrophic	Forms biofilms
Thiobacillus	Sulphur, tetrathionate, sulphide	Produces H ₂ S
Thiobacter	Sulphur, thiosulphate, sulphide	Produces H ₂ S, sulphate
Thiomonas	Thiosulphate, tetrathionate	Produces H ₂ S
Thiovirga	Sulphur, sulphide, thiosulphate	Produces H ₂ S
Venevivibrio	Sulphur, thiosulphate, H ₂	Produces H ₂ S

 Table 2.4
 Major microbiological taxa identified at Kuirau Park sites.

Many of the microorganisms identified from surface features located close to known takes for mineral pools are capable of producing biofilms, trapping suspended particles and reducing the porosity and permeability of the reinjection area (Feng et al. 2021). Most of these microbes are heterotrophic, obtaining carbon and energy from a wide variety of sources likely to be found

in bathing water, including sugars, organic acids and amino acids and peptides. These come from shed skin and hair cells as well as residual material from bathers' bodies, and plant or insect materials which fall into open pools. However, no bio-clogging has been reported at the RR sites following field-scale re-injection, so this may be a minor issue under the current environmental conditions.

A large number of sulphur oxidising and sulphate reducing bacteria and archaea were also identified from the geothermal springs. Sulphur oxidisers can use either elemental sulphur (S⁰) or sulphide (HS⁻ or H₂S) to produce sulphate, and usually fix CO₂ to obtain carbon. *Acidithiobacillus*, which dominated five of twenty five sites with up to 78% of all DNA sequences, is of particular note as it produces H₂SO₄ and is known to corrode even concrete (Li et al. 2017). Sulphur oxidisers are often filamentous and may also form biofilms, in addition to the heterotrophs noted in the table.

Sulphate-reducing organisms convert sulphate, and sometimes thiosulphate, into the toxic and corrosive gas H₂S, using either dissolved carbon compounds or CO₂ for their carbon source. These bacteria are known to cause issues in geothermal systems. In 2018, a geothermal plant in the Netherlands experienced bio-clogging and used sodium bisulphite as an oxygen scavenger to prevent corrosion, but this increased growth of sulphate-reducers and led to dangerously high levels of H₂S being released (Croese 2018a). Sulphate reducing bacteria can also induce calcium carbonate precipitation, both by increasing alkalinity and through acting as nucleation sites (Lin et al. 2018). The increase in alkalinity will also increase pH buffering of the system, supporting growth of more microorganisms (García-Gil et al. 2018).

Microorganisms involved in the formation of iron hydroxides (e.g. *Gallionella*, *Shewanella*, *Geothrix*) (Dinkel et al. 2018) were not detected in the 25 springs used in this report.

2.5 Conclusions

Reinjection of post-bathing water poses a risk of pathogen release to the environment, therefore monitoring and appropriate treatment (e.g. filtration) is recommended before this water is returned to the geothermal reservoir or discharged to surface water. Pathogens may infiltrate groundwater or surface water used for purposes other than drinking water and present a hazard through inhalation of aerosols, skin contact, or ingestion of contaminated food. There is a gradient of risk depending on the volume of water, the types of microorganisms present and the temperature, pH and permeability of the receiving environment.

Filtration will remove the natural microbial population as well as pathogens from the water and reduce the risk of adverse effects from their metabolic processes. Other methods of decontamination, such as chlorination or chemical disinfection, may be employed but care must be taken that resistant pathogens (e.g. *P. aeruginosa*, *Cryptosporidium*, *Giardia*) and abnormally high levels of other pathogens are controlled.

The microbial populations in nearby geothermal surface features can be used as a proxy for the microorganisms likely to be introduced into bathing pools. Many of the microorganisms identified from surface features located close to known takes for mineral pools are capable of producing biofilms which may reduce the porosity and permeability of the reinjection area. Sulphur – oxidising and – reducing microbes were identified in nearby surface features, and these may produce corrosive and toxic substances such as H_2SO_4 and H_2S . Growth of some of these microbes may be stimulated by energy sources found in post-bathing water such as sugars, organic acids, amino acids and peptides.

3.0 RECOMMENDATIONS

The following are recommended:

- The geochemical model presented in this work represents a single combination of brine chemistries, however, the natural diversity in reservoir composition and the variation in local permeability and fracture network geometry needs to be considered. We propose to conduct a tracer test to investigate the connectivity between the production well, reinjection wells, and the surface features.
- 2. Repeat the modelling using a larger range of fluid chemistries that represent other parts of the RGS.
- 3. The results do not consider long-term effects on the reservoir temperature (and hence mineral dissolution and precipitation). A separate modelling study should be undertaken if long term changes to the reservoir and connected surface features temperature are required.
- 4. Water from mineral pools should be monitored for the presence of pathogens. It is recommended that this monitoring covers a wide range of potentially pathogenic microorganisms and is more extensive than enterococci or faecal indicator bacteria.
- 5. Water from mineral pools should be appropriately treated before reinjection or discharge to surface water. Filtration is recommended as this will remove the natural microbial population as well as pathogens from the water and reduce the risk of adverse effects. Other methods of decontamination, such as chlorination or chemical disinfection, may be employed but care must be taken that resistant pathogens are controlled, as well as abnormally high levels of other pathogens (e.g. after an accidental faecal release).

4.0 REFERENCES

- One thousand springs: the microbiology of geothermal hotsprings in New Zealand. 2013. Lower Hutt (NZ): GNS Science; [accessed 2022 Jan 12]. http://1000springs.org.nz/.
- Aburto-Medina A, Shahsavari E, Cohen M, Mantri N, Ball AS. 2020. Analysis of the microbiome (Bathing Biome) in geothermal waters from an Australian balneotherapy centre. *Water*. 12(6):1705. doi:10.3390/W12061705.
- Allegra S, Grattard F, Girardot F, Riffard S, Pozzetto B, Berthelot P. 2011. Longitudinal evaluation of the efficacy of heat treatment procedures against *Legionella* spp. in hospital water systems by using a flow cytometric assay. *Applied and Environmental Microbiology*. 77(4):1268-1275. doi:10.1128/AEM.02225-10.
- Audia JP, Webb CC, Foster JW. 2001. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. *International Journal of Medical Microbiology*. 291(2):97-106. doi:10.1078/1438-4221-00106.
- Bozkurt H, D'Souza DH, Davidson PM. 2015. Thermal inactivation of foodborne enteric viruses and their viral surrogates in foods. *Journal of Food Protection*. 78(8):1597-1617. doi:10.4315/0362-028x.Jfp-14-487.
- Burnell JG. 2020. Rotorua geothermal reservoir model update. Lower Hutt (NZ): GNS Science. 21 p. Consultancy report 2020/01. Prepared for Bay of Plenty Regional Council.
- Chang SL. 1978. Resistance of pathogenic *Naegleria* to some common physical and chemical agents. *Applied and Environmental Microbiology*. 35(2):368-375. doi:10.1128/aem.35.2.368-375.1978.
- Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. *Microbiology and Molecular Biology Reviews*. 67(3):429-453. doi:10.1128/MMBR.67.3.429-453.2003.
- Croese E. 2018a. Development of sustainable geothermal operations. Groningen (NL): Microbial Analysis. 38 p. Report 20167363/1712. Prepared for Kennisagenda Aardwarmte.
- Croese E. 2018b. Microbiology in geothermal operations. Groningen (NL): Microbial Analysis. 37 p. Report 20177513/1987. Prepared for Kennisagenda Aardwarmte.
- Davenport CV, Sparrow EB, Gordon RC. 1976. Fecal indicator bacteria persistence under natural conditions in an ice-covered river. *Applied and Environmental Microbiology*. 32(4):527-536. doi:10.1128/aem.32.4.527-536.1976.
- Dennis PJ, Green D, Jones BPC. 1984. A note on the temperature tolerance of *Legionella*. *Journal of Applied Bacteriology*. 56(2):349-350. doi:10.1111/j.1365-2672.1984.tb01359.x.
- Dinkel E, Braun B, Muhrbeck M, Reul W, Meeder A, Szewzyk U, Scheytt T. 2018. Groundwater circulation wells for geothermal use: preliminary results of the Project Integralsonde Type II.
 In: *Proceedings, 43rd Workshop on Geothermal Reservoir Engineering*. 2018 Feb 12-14; Stanford University, Stanford. Stanford (CA): Stanford University. 6 p.
- [EPA] Environmental Protection Agency. 2012. Recreational water quality criteria. Washington (DC): EPA. Report 820-F-12-058.
- Essien J, Jonah I, Umoh A, Eduok S, Akpan E, Umoiyoho A. 2009. Heat resistance of dermatophyte's conidiospores from athletes kits stored in Nigerian University Sport's Center. *Acta Microbiologica et Immunologica Hungarica*. 56(1):71-79. doi:10.1556/amicr.56.2009.1.5.
- Fayer R. 1994. Effect of high temperature on infectivity of *Cryptosporidium parvum* oocysts in water. *Applied and Environmental Microbiology*. 60(8):2732-2735. doi:10.1128/aem.60.8.2732-2735.1994.

- Feng J, Zhao Y, Ji D, Gao Z. 2021. An experimental study on bio-clogging in porous media during geothermal water reinjection. *Journal of Water Resource and Protection*. 13(2):139-153. doi:10.4236/jwarp.2021.132008.
- Filippidou S, Jaussi M, Junier T, Wunderlin T, Jeanneret N, Palmieri F, Palmieri I, Roussel-Delif L, Vieth-Hillebrand A, Vetter A, et al. 2016. *Anoxybacillus geothermalis* sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station. *International Journal of Systematic and Evolutionary Microbiology*. 66(8):2944-2951. doi:10.1099/ijsem.0.001125.
- Gabriel AA, Panaligan DC. 2020. Heat and chlorine resistance of a soil *Acanthamoeba* sp. cysts in water. *Journal of Applied Microbiology*. 129(2):453-464. doi:10.1111/jam.14600.
- García-Gil A, Gasco-Cavero S, Garrido E, Mejías M, Epting J, Navarro-Elipe M, Alejandre C, Sevilla-Alcaine E. 2018. Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation. *Science of The Total Environment*. 633:765-775. doi:10.1016/j.scitotenv.2018.03.245.
- Horn B, Hewitt J, Withers H, Olsen L, Lymburn J. 2016. Review of microbial pathogen inactivation relevant to sous vide cooking at temperatures below 55°C. Wellington (NZ): Ministry for Primary Industries. 58 p. (MPI Technical Paper; 2017/35).
- Ji P, Rhoads WJ, Edwards MA, Pruden A. 2018. Effect of heat shock on hot water plumbing microbiota and *Legionella pneumophila* control. *Microbiome*. 6:30. doi:10.1186/s40168-018-0406-7.
- Juffs H, Deeth H. 2007. Scientific evaluation of pasteurisation for pathogen reduction in milk and milk products. Canberra (AU): Food Standards Australia New Zealand. 146 p.
- Kennedy J, Blair IS, McDowell DA, Bolton DJ. 2005. An investigation of the thermal inactivation of *Staphylococcus aureus* and the potential for increased thermotolerance as a result of chilled storage. *Journal of Applied Microbiology*. 99(5):1229-1235. doi:10.1111/j.1365-2672.2005.02697.x.
- Lee SJ, Si J, Yun HS, Ko GP. 2015. Effect of temperature and relative humidity on the survival of foodborne viruses during food storage. *Applied and Environmental Microbiology*. 81(6):2075-2081. doi:10.1128/AEM.04093-14.
- Li X, Kappler U, Jiang G, Bond PL. 2017. The ecology of acidophilic microorganisms in the corroding concrete sewer environment. *Frontiers in Microbiology*. 8:683. doi:10.3389/fmicb.2017.00683.
- Lin CY, Turchyn AV, Steiner Z, Bots P, Lampronti GI, Tosca NJ. 2018. The role of microbial sulfate reduction in calcium carbonate polymorph selection. *Geochimica et Cosmochimica Acta*. 237:184-204. doi:10.1016/j.gca.2018.06.019.
- Maheshwari G, Jannat R, McCormick L, Hsu D. 2004. Thermal inactivation of adenovirus type 5. *Journal of Virological Methods*. 118(2):141-146. doi:10.1016/j.jviromet.2004.02.003.
- Mendonca AF, Amoroso TL, Knabel SJ. 1994. Destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane. *Applied and Environmental Microbiology*. 60(11):4009-4014. doi:10.1128/aem.60.11.4009-4014.1994.
- Mocé-Llivina L, Muniesa M, Pimenta-Vale H, Lucena F, Jofre J. 2003. Survival of bacterial indicator species and bacteriophages after thermal treatment of sludge and sewage. *Applied and Environmental Microbiology*. 69(3):1452-1456. doi:10.1128/AEM.69.3.1452-1456.2003.
- Moore C, Nokes C, Loe B, Close M, Pang L, Smith V, Osbaldiston S. 2010. Guidelines for separation distances based on virus transport between on-site domestic wastewater systems and wells.
 Porirua (NZ): Environmental Science and Research Limited. 269 p. Client report CSC1001.
 Prepared for Foundation for Research Science and Technology.

- Moreau M, Cameron SG, Daughney CJ, Gusyev MA, Tschritter C. 2014. Envirolink Tools Project: capture zone delineation. Technical report. Lower Hutt (NZ): GNS Science. 91 p. (GNS Science report; 2013/57).
- Mroczek EK, Graham DJ, Scott BJ. 2011. Chemistry of the Rotorua Geothermal Field: update of spring and well compositions. In: *NZ Geothermal Workshop, 21-23 November 2011, Auckland: workshop programme*. Auckland (NZ): NZ Geothermal Workshop. 7 p.
- [NHMRC] National Health and Medical Research Council. 2008. Guidelines for managing risks in recreational water. Canberra (AU): Australian Government, NHMRC. 215 p.
- Ongerth JE, Johnson RL, Macdonald SC, Frost F, Stibbs HH. 1989. Back-country water treatment to prevent giardiasis. *American journal of public health*. 79(12):1633-1637. doi:10.2105/ajph.79.12.1633.
- Pang L, Farkas K, Lin S, Hewitt J, Premaratne A, Close M. 2021. Attenuation and transport of human enteric viruses and bacteriophage MS2 in alluvial sand and gravel aquifer media-laboratory studies. *Water Research*. 196:117051. doi:10.1016/j.watres.2021.117051.
- Richter K, Haslbeck M, Buchner J. 2010. The heat shock response: life on the verge of death. *Molecular Cell*. 40(2):253-266. doi:10.1016/j.molcel.2010.10.006.
- Ricker EB, Aljaafari HAS, Bader TM, Hundley BS, Nuxoll E. 2018. Thermal shock susceptibility and regrowth of *Pseudomonas aeruginosa* biofilms. *International Journal of Hyperthermia*. 34(2):168-176. doi:10.1080/02656736.2017.1347964.
- Sauch JF, Flanigan D, Galvin ML, Berman D, Jakubowski W. 1991. Propidium iodide as an indicator of *Giardia* cyst viability. *Applied and Environmental Microbiology*. 57(11):3243-3247. doi:10.1128/aem.57.11.3243-3247.1991.
- Scott BJ, Kissling WM, Moreau M, Sajkowski L, Burnell JG, Brakenrig T, Reeves RR. 2021. Assessing the Rotorua Geothermal System: a review of data sets. Wairakei (NZ): GNS Science. 101 p. Consultancy report 2020/84. Prepared for Bay of Plenty Regional Council.
- Scott BJ, Mroczek EK, Burnell JG, Zarrouk SJ, Seward A, Robson B, Graham DJ. 2016. The Rotorua Geothermal Field: an experiment in environmental management. *Geothermics*. 59(B):294-310. doi:10.1016/j.geothermics.2015.09.004.
- Sörqvist S. 2003. Heat resistance in liquids of *Enterococcus* spp., *Listeria* spp., *Escherichia* coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Veterinaria Scandinavica. 44(1-2):1-19. doi:10.1186/1751-0147-44-1.
- Spinks AT, Dunstan RH, Harrison T, Coombes P, Kuczera G. 2006. Thermal inactivation of waterborne pathogenic and indicator bacteria at sub-boiling temperatures. *Water Research*. 40(6):1326-1332. doi:10.1016/j.watres.2006.01.032.
- Stout JE, Best MG, Yu VL. 1986. Susceptibility of members of the family *Legionellaceae* to thermal stress: implications for heat eradication methods in water distribution systems. *Applied and Environmental Microbiology*. 52(2):396-399. doi:10.1128/aem.52.2.396-399.1986.
- Sykora JL, Keleti G, Martinez AJ. 1983. Occurrence and pathogenicity of *Naegleria fowleri* in artificially heated waters. *Applied and Environmental Microbiology*. 45(3):974-979. doi:10.1128/aem.45.3.974-979.1983.
- Tiwari A, Oliver DM, Bivins A, Sherchan SP, Pitkänen T. 2021. Bathing water quality monitoring practices in Europe and the United States. *International Journal of Environmental Research and Public Health*. 18(11):5513. doi:10.3390/ijerph18115513.

- Valeriani F, Margarucci LM, Romano Spica V. 2018. Recreational use of spa thermal waters: Criticisms and perspectives for innovative treatments. *International Journal of Environmental Research and Public Health*. 15(12):2675. doi:10.3390/ijerph15122675.
- Vetter A, Vieth A, Mangelsdorf K, Lerm S, Alawi M, Wolfgramm M, Seibt A, Würdemann H. 2010.
 Biogeochemical characterisation of geothermally used groundwater in Germany. In: *Proceedings World Geothermal Congress 2010;* 2010 Apr 25-29; Bali, Indonesia. Bali (ID): International Geothermal Association. 6 p.
- White HR. 1953. The heat resistance of *Streptococcus faecalis*. *Microbiology*. 8(1):27-37. doi:10.1099/00221287-8-1-27.
- [WHO] World Health Organization. 2006. Guidelines for safe recreational water environments. Volume 2: swimming pools and similar environments. Geneva (CH): World Health Organization. 118 p.
- World Health Organisation. 2009. Guidelines for safe recreational water environments. 1 Coastal and freshwaters. Geneva, Switzerland. 36 p.

APPENDICES

This page left intentionally blank.

APPENDIX 1 TOWN WATER COMPOSITION

ENVIRONMENTAL LABORATORY ANALYSIS REPORT Taiwhanga Pūtaiao Pūrongo

	wastewater Treatment Plant / Te Ngae Road / Rold	orua / 0/ 351 /611 / rdc.lab@rotorualc.nz / wy	ww.rotorualakescouricii.nz
Client:	RLC Water Solutions	Date received:	3/12/2020
Address:	Rotorua Lakes Council	Report Number:	2012023
	Private Bag 3029 Rotorua	Order Number:	RLP019583
Contact:	Eric Cawte	Issue date:	18/12/2020

Analysis of Sample(s):

		2012023-02
		ROTC-SCE
Absorbance at 270 nm		0.0010
Alkalinity as CaCO3	mg/L	27
Ammoniacal Nitrogen	mg/L	<0.010
Dissolved Chloride	mg/L	5.4
Dissolved Reactive Phosphorus	mg/L	0.084
Electrical Conductivity	µs/cm	88.5
Escherichia coli (potable sample)	MPN/100 mL	<1.0
Nitrate Nitrogen	mg/L	0.61
Nitrite Nitrogen	mg/L	<0.010
pН		7.3
Time (NZST)		08:00
Total Coliforms (potable sample)	MPN/100 mL	7.5
Total Oxidised Nitrogen (Nitrate +Nitrite)	mg/L	0.62
Total Phosphorus	mg/L	0.088
Turbidity	NTU	0.19
UV Transmissivity	%	100

Summary of Method(s):

Absorbance at 270 nm	Not an accredited test
Alkalinity as CaCO3	APHA 2320B**
Ammoniacal Nitrogen	NH4-N. APHA 4500-NH3 F (modified)
Dissolved Chloride	0.45 µm filtered. APHA 4500-Cl G
Dissolved Reactive Phosphorus	0.45 µm filtered. APHA 4500-P G
Electrical Conductivity	APHA 2510B**
Escherichia coli (potable sample)	Colilert-18 Quantitray (97 well). APHA 9223B**
Nitrate Nitrogen	NO3-N. APHA 4500-N03
Nitrite Nitrogen	NO2-N. APHA 4500-N02 B
рН	Tested at sample site. APHA 4500-H+ B**
Time (NZST)	New Zealand Standard Time. Not an accredited test
Total Coliforms (potable sample)	Colilert-18 Quantitray (97 well). APHA 9223B**

Accredited by International Accreditation New Zealand (IANZ) Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Rotorua Environmental Laboratory Report Number: 2012023 Page: 1 of 2

Figure A1.1 Rotorua Environmental Laboratory Analysis Report

Certi	ficate of Analy	sis				Page 1 of 13
Client: Contact:	Rotorua District Council Lal Chris Moody C/- Rotorua District Council Private Bag 3029 Rotorua Mail Centre Rotorua 3046	o Lab		ab No: ate Received: ate Reported: uote No: rder No: lient Reference: ubmitted By:	2487790 05-Dec-2020 18-Dec-2020 103324 RLP019853 NZDWS Water Q Chris Moody	SPv1 uality Standards
Sample Ty	pe: Aqueous					
	Sample Name:	ROTC-SCE 03-Dec-2020 8:00 am				
	Lab Number:	2487790.1				
ndividual Te	sts					
Total Mercur	y g/m ³	< 0.00008	-	-	-	-
Bromate	g/m³	< 0.005	-	-	-	-
Fotal Cyanide	e g/m³	< 0.002	-	-	-	-
Chlorite	g/m³	< 0.005	-	-	-	-
Chlorate	g/m ³	< 0.005	-	-	-	-
luoride	g/m ³	0.09	-	-	-	-
suipnate	g/m ³	2.8	-		-	
lU8U* Traisblersbud	g/m ³	< 0.00010	-	-	-	-
	rin* g/m ³	< 0.00010	-	-	-	-
Amine Acia (Chelating Agents in Potable water b			1		
tnylenediam	ninetetraacetic acid (EDTA) g/m ³	< 0.05	-	-	-	-
Organablitra	g/m ³	< 0.05	-	-	-	-
Organoivitro	gen & Phosphorus pesticides, trace,					
Acetochior	g/m ³	< 0.00004	-	-	-	-
Alachior	g/m ³	< 0.00004	5 7 5	-	-	-
Atrazine door	g/m ³	< 0.00004	-	-	-	-
Atrazine desi	sopropyl g/m ³	< 0.00004	-	-	-	-
	орюруі g/m ³	< 0.00000		-	-	-
Azinnhos-me	thyl a/m ³	< 0.00002	-	-	-	-
Benalaxyl	a/m ³	< 0.00002	-	_	-	-
Bitertanol	a/m ³	< 0.00008	-	-	-	-
Bromacil	g/m³	< 0.00004	-	-	-	-
Bromopropyla	ate g/m ³	< 0.00004	-	-	-	-
Butachlor	g/m ³	< 0.00004	-	-	-	-
Captan	g/m ³	< 0.00008	-	-	-	-
Carbaryl	g/m ³	< 0.00004	-	-	-	-
Carbofenothi	on g/m³	< 0.00004	-	-	-	-
Carbofuran	g/m³	< 0.00004	-	-	-	-
Chlorfluazuro	on g/m³	< 0.00004	-	-	-	-
Chlorothaloni	l g/m³	< 0.00004	-	-	-	-
Chlorpyrifos	g/m³	< 0.00004	-	-	-	-
Chlorpyrifos-	methyl g/m ³	< 0.00004	-	-	-	-
Chlortoluron	g/m³	< 0.00008	-	-	-	-
Cyanazine	g/m ³	< 0.00004	-	-	-	-
Cyfluthrin	g/m³	< 0.00004	-	-	-	-
<i>yhalothrin</i>	g/m ³	< 0.00004	-	-	-	-

Figure A1.2 Hill Laboratories Certificate of Analysis – 18 December 2020 (1 of 6).

	Sample Name:	ROTC-SCE 03-Dec-2020 8:00				
		am				
	Lab Number:	2487790.1				
OrganoNitrogen & Phospho	rus pesticides, trace,	liq/liq GCMS				
Ferbacil	g/m³	< 0.00004	-	-	-	-
Ferbufos	g/m³	< 0.00004	-	-	-	-
Ferbumeton	g/m³	< 0.00004	-	-	-	-
Ferbuthylazine	g/m³	< 0.00002	-	-	-	-
Ferbuthylazine-desethyl	g/m³	< 0.00004	-		-	
Terbutryn	g/m ³	< 0.00004	-		-	-
Thiabendazole	g/m ³	< 0.0002	-		-	-
Thiobencarb	g/m ³	< 0.00004	-	-	-	-
Tolylfluanid	g/m³	< 0.00002	-		-	-
Triazophos	g/m³	< 0.00004	-	-	-	-
Trifluralin	g/m ³	< 0.00004	-	-	-	-
√inclozolin	g/m ³	< 0.00004	-	-	-	-
Extended metals suite, as re	eceived, trace					
Aluminium	g/m ³	0.003	-	-	-	-
Antimony	g/m ³	< 0.0002	-	-	-	-
Arsenic	g/m ³	0.0029	-	-	-	-
Barium	g/m ³	0.008	-	-	-	-
Boron	g/m ³	0.008	2	-	_	-
Cadmium	g/m ³	< 0.00005	-	-	-	-
Caesium	g/m ²	0.00161	-	-	-	-
Calcium	g/m ³	23				
Chromium	g/m g/m ³	< 0.0005			-	-
Cobalt	g/m ²	< 0.0003		-	-	
Coppor	g/m²	< 0.0002	-		-	
Jopper	g/m²	< 0.000	-	-	-	-
	g/m³	< 0.02	-	-	-	-
Lanthanum	g/m ³	< 0.00010	-	-	-	-
	g/m ³	< 0.00010	-		-	-
	g/m ³	0.0136	-	-	-	-
viagnesium	g/m ³	1.46	-	-	-	-
Vanganese	g/m ³	< 0.0005	-		-	-
violybdenum	g/m ³	< 0.0002	-	-	-	-
Vickel	g/m³	< 0.0005	-	-	-	-
Potassium	g/m ³	2.3	-	-	-	-
Rubidium	g/m³	0.0083	-	-	-	-
Selenium	g/m³	< 0.0010	-	-	-	
Silver	g/m ³	< 0.00010	8		-	-
Sodium	g/m ³	10.1	-	-	-	-
Strontium	g/m ³	0.0131	-	-	-	-
Fhallium	g/m ³	< 0.00005	-	Ξ.	-	-
Гin	g/m³	< 0.0005	-	-	-	-
Jranium	g/m³	0.00003	-		-	-
√anadium	g/m³	< 0.0010	-	-	H	-
Zinc	g/m ³	< 0.0010	-		-	-
Chloramines						
Vonochloramine	g/m³	< 0.05	-	-	-	-
Dichloramine	g/m³	< 0.05	-	-	-	-
Frichloramine	g/m ³	< 0.05	-	-	-	-
Acrylamide in drinking water	r by LCMSMS in Org	anics, trace level				
Acrylamide	g/m ³	< 0.00005	-	-	-	-
Acid Herbicides Screen in V	Vater by LCMSMS			1		
		< 0.0004				
Bentazone	g/m ³	< 0.0004	-	-	-	-
Dremena mil	g/m ³	< 0.0004	-		-	-
	g/m ³	< 0.0004	-	-	-	-

S	ample Name:	ROTC-SCE 03-Dec-2020 8:00 am				
	Lab Number:	2487790.1				
Monoaromatic Hydrocarbons in	VOC Water by H	leadspace GC-MS				
1,2,4-Trimethylbenzene	g/m ³	< 0.0003	-	-	-	-
1,3,5-Trimethylbenzene	g/m³	< 0.0003	-	-	-	-
Ketones in VOC Water by Head	space GC-MS					
Acetone	g/m³	< 0.05	-	-	-	-
2-Butanone (MEK)	g/m ³	< 0.05	-	-	-	-
Methyl tert-butylether (MTBE)	g/m ³	< 0.0003	-	-		-
4-Methylpentan-2-one (MIBK)	g/m ³	< 0.010	-	-	-	-
Trihalomethanes in VOC Water	by Headspace 0	GC-MS				
Bromodichloromethane	g/m ³	< 0.0003	-	-	-	-
Bromoform (tribromomethane)	g/m ³	< 0.0003	-	-	-	-
Chloroform (Trichloromethane)	g/m ³	< 0.0003	~	-	-	-
Dibromochloromethane	g/m ³	< 0.0003	-	-	-	-
Other VOC in Water by Headsp	ace GC-MS					
Carbon disulphide	g/m³	< 0.0005	-	-		-
Naphthalene	g/m ³	< 0.0005	-	-		-

Analyst's Comments

It has been noted that some of the System Monitoring Compounds in the SVOC analysis on sample 2487790.1 had lower than expected recoveries, whereby 2-fluorophenol was 32% and Phenol-d5 was 39%. Therefore the phenolic compounds may be underestimated.

[‡] Analysis subcontracted to an external provider. Refer to the Summary of Methods section for more details.

Appendix No.1 - Eurofins ELS Report

Appendix No.2 - Landcare Research Report

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Method Description	Default Detection Limit	Sample No
·		
Derivitisation, liquid / liquid extraction, GC-MS analysis. In- house.	-	1
Bromine Oxidation followed by Atomic Fluorescence. US EPA Method 245.7, Feb 2005.	0.00008 g/m ³	1
Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified).	0.005 g/m ³	1
On-line distillation, colorimetry, trace level. ISO 14403:2012(E) (modified).	0.002 g/m ³	1
Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified).	0.005 g/m ³	1
Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified).	0.005 g/m ³	1
Direct measurement, ion selective electrode. APHA 4500-F ⁻ C 23 rd ed. 2017.	0.05 g/m ³	1
Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1
Acidification with HCI acid, derivatisation with N,N'- dicyclohexylcarbodiimide and 2,4-dichloroaniline using ethyl acetate as the extraction solvent. The derivative is cleaned on a silica solid phase extraction cartridge to remove excess derivatising agent, eluted with toluene, and quantified by gas chromatography on a BP-5 capillary column with electron capture detection. Subcontracted to Landcare Research Toxicology Laboratories, Christchurch. Ozawa H, Tsukioka T 1987. Gas chromatographic determination of sodium monofluoroacetate in water by derivatization with dicyclohexylcarbodiimide. Analytical Chemistry 59: 29142917.	0.00010 g/m ³	1
	Method Description Derivitisation, liquid / liquid extraction, GC-MS analysis. Inhouse. Bromine Oxidation followed by Atomic Fluorescence. US EPA Method 245.7, Feb 2005. Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified). On-line distillation, colorimetry, trace level. ISO 14403:2012(E) (modified). Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified). Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified). Direct measurement, ion selective electrode. APHA 4500-F ⁻ C 23 rd ed. 2017. Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017. Acidification with HCI acid, derivatisation with N,N ⁻ dicyclohexylcarbodiimide and 2,4-dichloranilline using ethyl acetate as the extraction cartridge to remove excess derivatising agent, eluted with toluene, and quantified by gas chromatography on a BP-5 capillary column with electron capture detection. Subcontracted to Landcare Research Toxicology Laboratories, Christchurch. Ozawa H, Tsukioka T 1987. Gas chromatography ic determination of sodium monofluoroacetate in water by derivatization with dicyclohexylcarbodiimide. Analytical Chemistry 59: 29142917.	Method Description Default Detection Limit Derivitisation, liquid / liquid extraction, GC-MS analysis. In- house. - Bromine Oxidation followed by Atomic Fluorescence. US EPA Method 245.7, Feb 2005. 0.00008 g/m³ Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified). 0.005 g/m³ On-line distillation, colorimetry, trace level. ISO 14403:2012(E) (modified). 0.005 g/m³ Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified). 0.005 g/m³ Sample analysed as received, filtered if required. Ion Chromatography. US EPA Method 300.1 Part B (modified). 0.005 g/m³ Direct measurement, ion selective electrode. APHA 4500-F ⁺ C 23 rd ed. 2017. 0.05 g/m³ Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017. 0.5 g/m³ Acidification with HCl acid, derivatisation with N,N'- dicyclohexylcarbodiimide and 2,4-dichloraniline using ethyl acetate as the extraction cartridge to remove excess derivatising agent, eluted with toluene, and quantified by gas chromatography on a BP-5 capillary column with electron capture detection. Subcontracted to Landcare Research Toxicology Laboratories, Christchurch. Ozawa H, Tsukioka T 1987. Gas chromatographic determination of sodium monofluoroacetate in water by derivatization with dicyclohexylcarbodiimide. Analytical Chemistry 59: 29142917.

Test	Method Description	Default Detection Limit	Sample No
Epichlorohydrin (Subcontracted)	Method based on USEPA 8260. Sub-contracted to Eurofins ELS Limited, Lower Hutt.	0.00010 g/m ³	1
Sum of HAA DWSNZ MAV ratios	Calculated as the sum of the individual haloacetic acids specified in DWSNZ (monochloroacetic acid, dichloroacetic acid and trichloroacetic acid) to their respective Maximum Allowable Values (MAVs). Drinking-water Standards for New Zealand 2005 (Revised 2008), Section 8.2.1.1.	0.001	1
Sum of Haloacetonitriles MAV ratios (NZ DW Stds)	Calculated as the sum of the individual haloacetonitriles specified in DWSNZ (dibromoacetonitrile & dichloroacetonitrile) to their respective Maximum Allowable Values (MAVs). Drinking- water Standards for New Zealand 2005 (Revised 2018).	-	1
Amine Acid Chelating Agents in Potable Water by GCMS	Derivitisation, liquid / liquid extraction, GC-MS analysis. In- house.	0.05 g/m ³	1
Extended metals suite, as received, trace	Analysed as received (after acid preservation, if required), ICP- MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.00002 - 0.05 g/m ³	1
Acrylamide in drinking water by LCMSMS in Organics, trace level	LC-MS/MS analysis. In-house.	0.00005 g/m ³	1
Acid Herbicides Screen in Water by LCMSMS	LC-MS/MS analysis. In-house.	0.0003 - 0.0006 g/m ³	1
Halogenated Acetic Acids in Water by GC-MS	Solvent extraction, derivitisation, GC-MS analysis. In-house based on US EPA 552.	-	1
Halogenated Volatile Disinfection By- Products in Water by GCMS	Solvent extraction, GC-MS analysis. In-house based on US EPA 551.	-	1
Org LCMS, trace level	LC-MS/MS analysis. In-house.	0.0004 - 0.006 g/m ³	1
Microcystins in Water by LCMSMS	SPE extraction, LC-MS/MS analysis. In-house.	0.00002 - 0.00003 g/m ³	1
Multiresidue Pesticides Trace in Water by Liq/liq GCMS	Liquid / liquid extraction, GC-ECD and GC-MS analysis. In- house based on US EPA 8081 and US EPA 8270.	1-1	1
Polycyclic Aromatic Hydrocarbons Trace in Water, By Liq/Liq	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.000005 g/m ³	1
Semivolatile Organic Compounds Trace in Water by GC-MS	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	-	1
Volatile Organic Compounds Trace in Water by Headspace GC-MS	Headspace GC-MS analysis. In-house based on US EPA 8260 and 5021.	0.0003 - 0.05 g/m ³	1
Chloramines			
Monochloramine	Colorimetric. APHA 4500-CI G 23rd ed. 2017.	0.05 g/m ³	1
Dichloramine	Colorimetric. APHA 4500-Cl G 23rd ed. 2017.	0.05 g/m ³	1
Trichloramine	Colorimetric. APHA 4500-Cl G 23rd ed. 2017.	0.05 g/m ³	1
Multiresidue Extra Pesticides Trace in Wa	ater samples by Liq/liq		
Bendiocarb	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Benodanil	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Bifenthrin	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00002 g/m ³	1
Bromophos-ethyl	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Bupirimate	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Captafal	US EPA 8270.	0.00004 g/m ³	1
Carbovin	US EPA 8270. Liquid / liquid extraction, GC-MS analysis, In-house based on	0.00002 g/m ³	1
Chlorfenvinphos	US EPA 8270. Liquid / liquid extraction, GC-MS analysis. In-house based on	0.00004 g/m ³	1
Chlorpropham	US EPA 8270. Liquid / liquid extraction, GC-MS analysis. In-house based on	0.00008 g/m ³	1
Chlozolinate	US EPA 8270. Liquid / liquid extraction, GC-MS analysis. In-house based on	0.00004 g/m ³	1
Coumaphos	US EPA 8270. Liquid / liquid extraction, GC-MS analysis. In-house based on	0.00008 g/m ³	1
Cyproconazole	Liquid / liquid extraction, GC-MS analysis. In-house based on	0.00004 g/m ³	1
Cyprodinil	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1

est	Method Description	Default Detection Limit	Sample No
Demeton-S-methyl	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Dichlobenil	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Dichlofenthion	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Dicofol	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.0002 g/m ³	1
Dicrotophos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Dinocap	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.0003 g/m ³	1
Disulfoton	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
EPN	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Esfenvalerate	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Ethion	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Etrimfos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Famphur	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Fenamiphos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Fenarimol	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Eenitrothion	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Eenpropathrin	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Fensulfothion	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
enthion	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Fenvalerate	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Folpet	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Hexythiazox	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.0002 g/m ³	1
mazalil	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.0002 g/m ³	1
ndoxacarb	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
odofenphos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
sazophos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
sofenphos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00002 g/m ³	1
_eptophos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Methacrifos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Methidathion	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Methiocarb	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Mevinphos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Nitrofen	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Nitrothal-isopropyl	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Oxychlordane	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00002 g/m ³	1

Test	Method Description	Default Detection Limit	Sample No
Penconazole	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Phorate	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Phosmet	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Phosphamidon	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Propetamphos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00006 g/m ³	1
Propham	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Prothiofos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Pyrazophos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Pyrifenox	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Pyrimethanil	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Quintozene	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Sulfotep	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Tebufenpyrad	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00002 g/m ³	1
Tetrachlorvinphos	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1
Thiometon	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00008 g/m ³	1
Triadimefon	Liquid / liquid extraction, GC-MS analysis. In-house based on US EPA 8270.	0.00004 g/m ³	1

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 06-Dec-2020 and 18-Dec-2020. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

1

Ara Heron BSc (Tech) Client Services Manager - Environmental

Lab No: 2487790-SPv1

Hill Laboratories

Page 13 of 13

APPENDIX 2 COMPOSITION OF WELL RR1021

	Sample No:	2536-Poly-Spa-1021
Wahaa Concreted Steers	Sampling Date:	6 February 2019
webre Separated Steam	Site ID:	RR1021
	Field ID:	Polynesian Spa Bore
Carbon Dioxide	umol/mol discharge	10139
Hydrogen sulphide	umol/mol discharge	2458
Argon	umol/mol discharge	0.26
Helium	umol/mol discharge	0.004
Hydrogen	umol/mol discharge	70.5
Methane	umol/mol discharge	6.3
Nitrogen	umol/mol discharge	14.6
Oxygen	umol/mol discharge	0.255
Carbon Monoxide	umol/mol discharge	0.199
Ammonia	umol/mol discharge	6.85
Steam		987305
Deuterium	%0	-43.8
Oxygen 18	%	-7.76
Sampling Point Pressure	bg	3.02–3.3
Separation Pressure	bg	3.0–3.28

	GNS Sample No.	2019000707
	Collection Date:	6 February 2019
Webre Separated Water	Site ID:	RR1021
	Field ID:	Polynesian Spa Well
	Sample Type:	Separated Water
Bicarbonate (Total)	mg/l	250
рН	-	8.27
HCO₃ Analysis temperature	°C	22
HCO₃ Analysis Date	-	8/02/2019
Aluminium	mg/l	0.1
Ammonia	mg/l	0.6
Arsenic	mg/l	0.03
Boron	mg/l	5.5
Bromide	mg/l	1.8
Calcium	mg/l	8.7
Chloride	mg/l	379
Diss. Reactive Phosphorus	mg/l	0.03
Fluoride	mg/l	2.1
Iron	mg/l	0.07
Lithium	mg/l	4.2
Magnesium	mg/l	0.11
Nitrate as N	mg/l	< 0.01
Potassium	mg/l	54
Silica (as SiO ₂)	mg/l	285
Sodium	mg/l	482
Sulphate	mg/l	46
Sulphide (total as H ₂ S)	mg/l	191
H ₂ S Date Developed	-	7/02/2019
H ₂ S Date Analysed	-	12/02/2019
Deuterium	per mil	-33.8
Oxygen 18	per mil	-4.68
Sampling Point Pressure	bg	3.02–3.30
Separation Pressure	bg	3.00–3.28

APPENDIX 3 WATCH OUTPUT FILE FOR WELL RR1021

ICELAND WATE	R CHEMISTRY GROUP)	Program WATCH, version 2.4 / 2010
2019000707	RR1021		
water sample	(mg/kg)	Steam sample	
pH/deg.C	8.27/ 22.0	Gas (volume %)	Reference temperature deg.C : 155.0 (Arbitrary)
UDZ HOG	180.00	U2 U.UU	Sampling processor has about 4.2
NU2	151.00	NU2 0.00	Discharge enthalpy kI/kg : (EE (Measured)
p NR3	0.60 E E000	NR3 0.00	Discharge enthalpy kJ/kg : 655. (Measured)
5102	285 00	02 0.00	Steem fraction at collection : 0.0209
Na	482 00	CH4 6.52	Steam Haction at Collection . 0.0205
K Ng	54 00	N2 16.30	Measured temperature deg C : 0.0
Ма	0 110	N2 10.00	Measured Demperadure deg.0 . 0.0
Ca	8.70	Liters das per ko	
F	2.100	condensate/deg.C 0.12/25.0	Condensate (mg/kg)
c1	379.00	condensate, deg.o 0.112, 20.0	pH/deg.C 0.00/ 0.0
504	46.00	Total steam (mg/kg)	CO2 0.00
A1	0 1000	CO2 25162.85	H25 0.00
Fe	0.0700	H2S 4710.53	NH3 0.00
TDS	0.00	NH3 6.62	Na 0.00
Ionic streng	th = 0.02278		
Ionic balanc	e : Cations (mo	l.eg.) = 0.02276622 Anions	(mol.eg.) = 0.02133396 Difference (%) = 6.50
	,		
Liquid phase	components (mg/k	(g) Vapor	phase (mg/kg) Gas pressures (bar-abs.)
в	5.3882 CO	2 512.75 CO2	324465.35 CO2 0.722E+00
SiO2	279.21 H2	S 261.61 H2S	41010.49 H2S 0.118E+00
Na	472.21 NH	3 0.72 NH3	4.87 NH3 0.280E-04
K	52.90 H2	0.02 H2	242.58 H2 0.118E-01
Mg	0.108 02	0.00 02	0.00 O2 0.965E-49
Ca	8.52 CH	4 0.02 CH4	161.69 CH4 0.987E-03
F	2.057 N2	0.04 N2	761.28 N2 0.266E-02
Cl	371.30		H2O 0.543E+01
SO4	45.07		Total 0.629E+01
Al	0.0980		
Fe	0.0686		
TDS	0.00 Aq	uifer steam fraction = 0.0006	
Ionic streng	th = 0.02196		1000/T (Kelvin) = 2.34
Ionic balanc	e : Cations (mo	l.eq.) = 0.02212423 Anions	(mol.eq.) = 0.02072045 Difference (%) = 6.55
Oxidation po	tential (volts) :	Eh H2S= -0.415 Eh CH4=	-0.426 Eh H2= -0.474 Eh NH3= -0.453
		a .	
Cnemical geo	thermometers (deg	rees () 5 Deter (DC Dulletic 2	-10 New 1000)
Quartz .	20%.3 (rournier	a Foucer, exc Bulletin, pp. 3	-12, NOV. 1902) E0. 1977)
Unaicedony	100.U (Fournier	, Geothermics, Vol. 5, pp. 41-	30, 13777 John Woll 47, mm 567-577, 1982)
NA/K	213.5 (Arnorsso	n et al., Geochim. Cosmochim.	Acta, vol. 47, pp. 567-577, 1983)

Confidential	2022

Activity coef	ficients	in water				2019000707		
H+		0 847	K+		0 810	FeSO4+		0 824
OH-		0.814	Ca++		0.479	FeC1++		0.465
H3SiO4-		0.817	Ma++		0.506	FeC12+		0.824
H2SiO4		0.471	CaHCO3+		0.830	FeC14-		0.817
H2B03-		0.806	MaHCO3+		0.817	FeC1+		0.817
HCO3-		0 817	CaOH+		0 830	A1+++		0 228
C03		0 457	MaOH+		0.000	710H++		0.471
HS-		0.437	NH4+		0.000	A1 (OH) 2+		0.977
S		0.014	Fett		0.000	A1 (OH) 4-		0.021
HS04-		0.900	Fottt		0.229	A1904+		0.021
504		0.821	FeOH+		0.220	11 (504) 2-		0.821
NaSO4-		0.400	Fe (OP) 2-		0.024	A1 (304) 2		0.021
Nabor-		0.027	Fe (OH) 4		0.024	ALETT		0.371
K304-		0.027	Fe (OH) 4		0.465	AIE2T		0.027
C1-		0.814	Fe (OH) 2+		0.403	ALF4-		0.021
N-1		0.810	Fe (OH) 4-		0.027	ALES		0.437
Chomical spos	ios in	0.81/	re(On)4-		0.827	AIF0	Wator pH i	~ 6 E44
CUENTCAT Spec	Tes IN Wa	-6 472	Mail	0.00	- 5 5 6 2	E- (01) 2	water ph 1	.5 0.344
nt OU	0.00	-0.4/2	Mg++	0.08	-5.503	Fe (OH) 3	0.00	-7.555
UH-	442.00	-4.954	NACI	3.95	-4.1/1	Fe(OH)4-	0.00	-8.692
H45104	442.80	-2.33/	KUI N- SOA	0.14	-5./3/	FeC1+	0.01	-0.90/
H3S104-	3.19	-4.474	NaSO4-	3.89	-4.486	FeC12	0.00	-15.641
H2S104	0.00	-8.638	KS04-	1.45	-4.970	FeCI++	0.00	-19.737
NAH35104	0.73	-5.212	CaSO4	1.30	-5.020	FeC12+	0.00	-21.314
H3B03	30.66	-3.305	MgSO4	0.12	-6.006	FeC13	0.00	-23.875
H2B03-	0.16	-5.586	CaCO3	0.23	-5.630	FeC14-	0.00	-26.906
HZCO3	412.45	-2.177	MgCO3	0.00	-7.986	res04	0.01	-7.403
HCO3-	300.00	-2.308	CaHCO3+	8.19	-4.091	res04+	0.00	-19.186
CO3	0.10	-5.791	MgHCO3+	0.02	-6.547	A1+++	0.00	-17.603
H2S	112.86	-2.480	CaOH+	0.00	-7.312	AIOH++	0.00	-13.353
HS-	144.34	-2.360	MgOH+	0.00	-7.830	A1 (OH) 2+	0.00	-9.683
S	0.00	-11.144	NH4OH	0.75	-4.668	A1 (OH) 3	0.01	-6.871
H2SO4	0.00	-14.405	NH4+	0.38	-4.678	AI (OH) 4-	0.33	-5.456
HSO4-	0.04	-6.396	Fe++	0.06	-5.986	A1SO4+	0.00	-17.823
SO4	39.84	-3.382	Fe+++	0.00	-21.427	A1(SO4)2-	0.00	-19.211
HF	0.01	-6.217	FeOH+	0.00	-7.851	A1F++	0.00	-13.879
F-	2.05	-3.968	Fe (OH) 2	0.00	-8.541	A1F2+	0.00	-11.638
C1-	368.84	-1.983	Fe (OH) 3-	0.00	-14.221	A1F3	0.00	-11.199
Na+	469.76	-1.690	Fe (OH) 4	0.00	-18.216	A1F4-	0.00	-12.507
K+	52.41	-2.873	Fe (OH) ++	0.00	-14.653	A1F5	0.00	-14.912
Ca++	4.80	-3.922	Fe (OH) 2+	0.00	-8.735	A1F6	0.00	-18.454
Logarithms of	f mineral	solubilit	y product constar	nts (K) an	d ion acti	ivity products	(Q) in wate	r
	log K	log Q		log K	log Q		log K	log Q
Adularia	-15.548	-15.516	Albite, low	-14.963	-14.329	Analcime	-12.095	-11.993
Anhydrite	-6.447	-7.971	Calcite	-10.505	-10.372	Chalcedony	-2.462	-2.337
Mg-Chlorite	-80.132	-87.441	Fluorite	-10.572	-12.356	Goethite	-2.452	-3.731
Laumontite	-25.282	-24.672	Microcline	-16.589	-15.516	Magnetite	-25.382	-23.855
Ca-Montmor.	-76.292	-72.711	K-Montmor.	-36.492	-37.199	Mg-Montmor.	-77.647	-74.268
Na-Montmor.	-36.649	-36.012	Muscovite	-18.853	-16.513	Prehnite	-35.805	-36.665
Pyrrhotite	-72.044	-58.525	Pyrite	-107.981	-60.689	Quartz	-2.648	-2.337
Wairakite	-23.867	-24.672	Wollastonite	9.350	6.510	Zoisite	-35.432	-37.163
Epidote	-39.447	-40.396	Marcasite	-87.514	-60.689	Talc	12.544	12.521
Chrysotile	19.765	17.194	Sil. amorph.	-1.966	-2.337			

2019000707	,	Aquif	er liquid boiled	to 145.0	°c	De	gassing coefficient is 1.0000
Liquid pha		- (ma/ka)		Vanar	where (we	/ka)	Gas measures (harrahs)
Fidnig bus	se component	s (mg/kg)	101 04	vapor	pnase (mg	/ Kg /	Gas pressures (bar-abs.)
8:02	3.4990	202	192.94	102	2101/	41	CO2 0.419E-01
3102	204.99	120	103.44	120	3063		H25 0.111E-01
Na	481.98	NH3	0.59	NH3	7	.28	NH3 0.320E-04
K	54.00	H2	0.00	H2	7	.95	H2 0.294E-03
Mg	0.110	02	0.00	02	0	.00	02 0.348E-47
Ca	8.70	CH4	0.00	CH4	5	.33	CH4 0.249E-04
F	2.100	N2	0.00	N2	23	.32	N2 0.623E-04
Cl	378.99						H2O 0.416E+01
304	46.00						Total 0.421E+01
Al	0.1000						
Fe	0.0700						
TDS	0.00	Aguife:	r steam fraction	= 0.0209			
		-					
Ionic stre	ngth = 0.02	237				1000/T	Kelvin) = 2.39
Ionic bala	nce: Cati	ons (mol.eq	.) = 0.02250944	Anions	(mol.eq.)	= 0.02107661	Difference $(%) = 6.57$
Oxidation	potential (v	olts) :	Eh H23= -0.497	Eh CH4=	-0.492 E	h H2= -0.484	Eh NH3= -0.550
	•						
Chemical o	eothermomete	rs (degrees	C)				
Ouartz	199.7 (F	ournier & P	otter, GRC Bullet	in pp. 3	-12, Nov.	1982)	
Chalcedony	- 180 7 (F	ournier. Ge	othermics, vol 5	. nn 41-	50. 1977)	,	
N-/N	212 8 /3	version at	ALLEANIAGE, VOIL 0	, pp. 41	lot usi	47 mm 567	-577 1082)
Na/K	818-0 \ Q	**********	XEXE		ACCA, VOI.	4), pp. 00,	3777 1908)
Activity c	Serricients	in water	71			R-8041	
n+ 07		0.850	A.T.		0.814	re304+	0.828
OH-		0.817	Catt		0.487	0.0000 +++	0.472
H3Si04-		0.821	Mg++		0.513	FeC12+	0.828
H2SiO4		0.478	CaHCO3+		0.834	FeC14-	0.821
H2B03-		0.810	MgHCO3+		0.821	EESL+	0.821
HCO3-		0.821	CaOH+		0.834	A1+++	0.236
C03		0.465	MgOH+		0.837	AlOH++	0.478
HS-		0.817	NH4+		0.810	A1 (OH) 2+	0.830
s		0.472	Fe++		0.487	A1 (OH) 4-	0.824
H904-		0 824	F=+++		0.226	31904+	0.824
804		0.457	FaOH+		0.230	31 (804) 2-	0.824
N-804-		0.407	ARXXX.		0.020	31844	0.024
N2504-		0.830	re(OR) 3-		0.828	ONDAT T	0.478
KS04-		0.830	Fe (OH) 4		0.472	AIF2+	0.830
F		0.817	Fe (OH) ++		0.472	AIP4-	0.824
C1-		0.814	Fe (OH) 2+		0.830	A1F5	0.465
Na+		0.821	Fe (OH) 4-		0.830	A1F6	0.179
2019000707		Aquife	r liquid boiled :	to 100.0 '	°c	De	egassing coefficient is 1.0000
2019000707		Aquife	r liquid boiled	to 100.0	°c	D.	egassing coefficient is 1.0000
2019000707 	e components	Aquife (mg/kg)	r liquid boiled (to 100.0 Vapor	°C phase (mg	De	egassing coefficient is 1.0000 Gas pressures (bar-abs.)
2019000707 ====== Liquid phas B	e components 6.0138	Aquife (mg/kg) CO2	r liquid boiled r	to 100.0 Vapor CO2	°C phase (mg 5198	De (/kg) :.74	Gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02
2019000707 ======= Liquid phas B SiO2	e components 6.0138 311.62	Aquife (mg/kg) CO2 H23	r liquid boiled	to 100.0 Vapor CO2 H23	°C phase (mg 5198 1522	D(/kg) .74 .87	egassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H2S 0.816E-03
2019000707 ======== Liquid phas B SiO2 Na	e components 6.0138 311.62 527.02	Aquife (mg/kg) CO2 H23 NH3	r liquid boiled y 177.06 140.91 0.28	to 100.0 Vapor CO2 H2S NH3	°C phase (mg 5198 1522 4	Da (/kg) 74 87 55	Gas pressures (bar-abs.) CO2 0.216E-02 H2S 0.816E-03 NH3 0.488E-05
2019000707 ======= Liquid phas B SiO2 Na K	e components 6.0138 311.62 527.02 59.04	Aquife (mg/kg) CO2 H2S NH3 H2	r liquid boiled 177.06 140.91 0.28 0.00	to 100.0 Vapor CO2 H2S NH3 H2	°C phase (mg 5198 1522 4 1	D(/ kg) 74 87 59	eqassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H2S 0.816E-03 NH3 0.488E-05 H2 0.144E-04
2019000707 Liquid phas B SiO2 Na K Mg	e components 6.0138 311.62 527.02 59.04 0.120	Aquife (mg/kg) CO2 H23 NH3 H2 O2	r liquid boiled - 177.06 140.91 0.28 0.00 0.00	to 100.0 Vapor CO2 H2S NH3 H2 O2	°C phase (mg 5198 1522 4 1 0	De 74 87 55 59 00	Gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53
2019000707 Liquid phas B SiO2 Na K Mg Ca	e components 6.0138 311.62 527.02 59.04 0.120 9.51	Aquife (mg/kg) CO2 H23 NH3 H2 CPH4	177.06 140.91 0.28 0.00 0.00 0.00	Vapor CO2 H2S NH3 H2 O2 CH4	°C phase (mg 5198 1522 4 1 0 0	D4 .74 .87 .55 .59 .00	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05
2019000707 Liquid phas B SiO2 Na K Mg Ca F	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 W2	177.06 140.91 0.28 0.00 0.00 0.00 0.00	Vapor CO2 H2S NH3 H2 O2 CH4 N2	°C phase (mg 5198 1522 4 1 0 1	D. .74 .87 .55 .59 .00 .07 .66	Eqassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.202E-05
2019000707 Liquid phas B SiO2 Na K Mg Ca F C1	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40	Aquife (mg/kg) CO2 H28 NH3 H2 O2 CH4 N2	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2	°C phase (mg 5198 1522 4 1 0 1 4	D .74 .87 .55 .59 .00 .07 .66	Gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H2S 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.402E+01
2019000707 Liquid phas B SiO2 Na K Mg Ca F Cl SO4	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40	Aquife (mg/kg) CO2 H23 NH3 H2 O2 CH4 N2	177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2	°C phase (mg 5198 1522 4 1 0 1 4	Da .74 .87 .55 .59 .00 .07 .66	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 T-r-10 0.202E02
2019000707 	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2	°C phase (mg 5198 1522 4 1 0 1 4	D. 	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01
2019000707 	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093	Aquife (mg/kg) CO2 H28 NH3 H2 O2 CH4 N2	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2	°C phase (mg 5198 1522 4 1 0 1 4	D. .74 .87 .55 .00 .07 .66	Eqassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H2S 0.816E-03 NH3 0.468E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01
2019000707 	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2	°C phase (mg 5198 1522 4 1 0 1 4	Da .74 .87 .55 .59 .00 .07 .66	Gas pressures (bar-abs.) CO2 0.216E-02 H28 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01
2019000707 Liquid phas B SiO2 Na K Mg Ca F C1 SO4 A1 Fe TDS	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer	r liquid boiled - 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 steam fraction -	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045	°C phase (mg 5198 1522 4 1 0 1 4	D: .74 .87 .59 .00 .07 .66	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01
2019000707 ================================	e components 6.0138 311.62 59.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer	r liquid boiled - 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 0.00	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045	°C phase (mg 5198 1522 4 1 0 1 4	D. .74 .87 .55 .59 .00 .07 .66	Passing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01
2019000707 Liquid phas B SiO2 Na K Mg Ca F C1 SO4 A1 Fe TDS Ionic stren	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024	Aquife (mg/kg) CO2 H28 NH3 H2 O2 CH4 N2 Aquifer 42	r liquid boiled - 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 steam fraction :	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045	°C phase (mg 5198 1522 4 1 0 1 4	Da .74 .87 .55 .59 .00 .07 .66	Gas pressures (bar-abs.) CO2 0.216E-02 H28 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68
2019000707 Liquid phas B SiO2 Na K Mg Ca F C1 SO4 A1 Fe TDS Ionic stren Ionic balan	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.53.	r liquid boiled - 177.06 140.91 0.28 0.00 0.00 0.00 0.00 steam fraction =) = 0.02440441	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions	°C phase (mg 5198 1522 4 1 0 1 4 (mol.csg.)	1/kg) .74 .57 .59 .00 .07 .66 1000/T = 0.02284003	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62
2019000707 Liquid phas B SiO2 Na K Mg Ca F Cl SO4 Al Fe TDS Ionic stren Ionic balan Oxidation p	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mcl.cgg. lts) :	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 steam fraction =) = 0.02440441 Eh H2S= -0.487	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= -	°C phase (mg 5198 1522 4 1 0 1 4 (mol.5g.) -0.472 E	D. .74 .87 .59 .00 .07 .66 1000/T = 0.0228400 h H2= -0.45	Cas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538
2019000707 Liquid phas B SiO2 Na K Mg Ca F Cl SO4 Al Fe TDS Ionic stren Ionic balan Oxidation p	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo	Aquife (mg/kg) CO2 H23 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.cg. 1ts) :	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 = 0.02440441 Eh H2S = -0.487	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4=	°C phase (mg 5198 1522 4 1 0 1 4 (mol.sg.) -0.472 E	1000/T 1000/T 0.0228400: h H2= -0.45;	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 & Eh NH3 = -0.538
2019000707 Liquid phas B SiO2 Na K Mg Ca F C1 SO4 A1 Fe TDS Ionic stren Ionic balan Oxidation p Chemical ge	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.000 gth = 0.024 ce : Catio otential (vo	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mol.sg. lts) : s (degrees	r liquid boiled 177.06 140.91 0.28 0.00 0.0	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= -	°C phase (mg 5198 1522 4 1 0 1 4 (mcl.52.) -0.472 E	De 7 kg) 7 4 . 57 . 59 . 00 . 07 . 66 1000/T = 0.02284003 h H2= -0.452	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 Difference (%) = 6.62 a Eh NH3= -0.538
2019000707 Liquid phas B SiO2 Na K Mg Ca F Cl SO4 Al Fe TDS Ionic stren Ionic balan Oxidation p Chemical ge Ouartz	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mol.eg. lts) : s (degrees urnier 5 Po	r liquid boiled 177.06 140.91 0.28 0.00 0.0	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4=	°C phase (mg 5198 1522 4 0 0 1 4 (mol.5g.) -0.472 E	D. .74 .87 .59 .00 .07 .66 1000/T = 0.0228400 h H2= -0.45 1982)	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538
2019000707 ================================	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo	Aquife (mg/kg) CO2 H23 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgd.cgg. lts) : s (degrees urnier & Po urnier & Geo	r liquid boiled 140.91 0.28 0.00	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3-	°C phase (mg 5198 1522 4 1 0 1 (mol.sg.) -0.472 E -12, Nov.	Da .74 .87 .55 .59 .00 .07 .66 1000/T = 0.02284000 h H2= -0.452 1982)	Gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538
2019000707 Liquid phas B SiO2 Na K Mg Ca F Cl SO4 Al Fre TDS Ionic stren Ionic balan Oxidation p Chemical ge Quartz Chalcedony Na/K	<pre>e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 160.9 (Fo 215.1 (Ar </pre>	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier 5 Po urnier, Spo	r liquid boiled 177.06 140.91 0.28 0.00 0.0	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41-1	°C phase (mg 5198 1522 4 1 0 1 4 (mol.52.) -0.472 E -12, Nov. 50, 1977)	De (/kg) .74 .55 .59 .00 .07 .66 1000/T = 0.02284003 h H2= -0.452 1982) 47. pp. 56	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 Difference (%) = 6.62 2 Eh NH3= -0.538
2019000707 ================================	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (J)	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.cg. lts) : s (degrees urnier & Po urnier, Geo R&RARASE et n water	r liquid boiled 177.06 140.91 0.28 0.00 0.02400441 Eh H2S= -0.487 C) there Sullet: Sechar Scatter Sca	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41-3 amochim. 2	*C phase (mg 5198 1522 4 1 0 1 4 (mol.sg.) -0.472 E -12, Nov. 50, 1977) Acta, vol.	D. .74 .87 .59 .00 .07 .66 1000/T = 0.0228400 % H2= -0.45 1982) 47, pp. 56	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 8 Eh NH3= -0.538
2019000707 =========== Liquid phas B SiO2 Na K Mg Ca F Cl SO4 Al TD3 Ionic stren Ionic balan Oxidation p Chemical ge Quartz Chalcedony Na/K Activity co	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 122.4 (Fo 160.9 (Fo 215.1 (Ar	Aquife (mg/kg) CO2 H23 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. its) : s (degrees urnier & Poo urnier, Sto Mggsgg, et n water o eso	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 = 0.02440441 Eh H2S= -0.487 C) tter, GRC Bullet: thermics, vol. 5; al., Scochim. Sco	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41 amochim -	*C phase (mg 5198 1522 4 1 0 1 (mol.sg.) 0.472 E -12, Nov. 50, 1977) Acta, vol.	1000/T 1000/T	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48EE-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983)
2019000707 Liquid phas B SiO2 Na K Mg Ca F C1 SO4 A1 Fre TDS Ionic stren Ionic balan Oxidation p Chemical ge Quartz Chalcedony Na/K Activity co H+	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.000 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ar	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mol.sg. lts) : s (degrees urnier & Po urnier, SE0 B028208 et n water 0.863	r liquid boiled 177.06 140.91 0.28 0.00 0.0	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41-1 zmoobim. 2	*C phase (mg 5198 1522 4 1 0 1 4 (mol.69.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.522	De (/kg) .74 .55 .59 .00 .07 .66 1000/T = 0.02284000 h H2= -0.45 1982) 47, pp. 56 FeS04+ FeS04+	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 0.842 0.555
2019000707 ================================	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ar	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier & Po urnier, Geg B&SASASR et n water 0.863 0.832	r liquid boiled 177.06 140.91 0.28 0.00 0.02400441 Eh H23= -0.487 C) Ehermicz, vol. 5 al., Greenting Series K+ Ca++	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41-3 amochim- 2	*C phase (mg 5198 1522 4 1 0 1 4 (mol.58.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520	D. .74 .87 .59 .00 .07 .66 1000/T = 0.0228400 h H2= -0.45 1982) 47, pp. 56 Fe304+ EsC1++	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.506
2019000707 ================================	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ag efficients i	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.cgg. lts) : s (degrees urnier & Po urnier, & Po urnier, & Po urnier, & So 0.863 0.863 0.835	r liquid boiled 177.06 140.91 0.28 0.00 0.02 0.02440441 Eh H23= -0.487 Ch Eullet: K+ Ca++ Mg++	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- ; pp. 41-3 amochim - 1	°C phase (mg 5198 1522 4 1 0 1 4 (mol.58.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.546	Da 1/kg) .74 .87 .55 .59 .00 .07 .66 1000/T = 0.0228400 th H2= -0.45 1982) 47, pp. 56 FeS04+ SeC1+ FeC12+	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48EE-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 0.842 0.506 0.842
2019000707 Liquid phas B SiO2 Na K Mg Ca F Cl SO4 Al Fre TDS Ionic stren Ionic balan Oxidation p Chemical ge Quartz Chalcedony Na/K Activity co H+ OH- H2SiO4	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.000 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ar	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.SR- lts) : s (degrees urnier & Po urnier, Sto Box2308 to n water 0.863 0.835 0.511	r liquid boiled 177.06 140.91 0.28 0.00 0.01 0.02400441 Eh H2S= -0.487 C) therefore Coullet: K++ CaHCO3+	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41-1 zmachim- i	*C phase (mg 5198 1522 4 1 0 1 4 (mel.59.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.526 0.546 0.547	De 1/kg) 74 .55 .59 .00 .07 .66 1000/T = 0.02284000 h H2= -0.45 1982) 47, pp. 56 FeS04+ EsC12+ FeC12+ FeC14-	<pre>Gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 Difference (%) = 6.62 Difference (%) = 6.62 Difference (%) = 6.62 Difference (%) = 0.842 O.842 O.842 O.842 O.842 O.842 O.845</pre>
2019000707 ================================	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ag efficients i	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.cg. 1ts) : s (degrees urnier & Po urnier, Geo ReXEASE et n water 0.863 0.832 0.835 0.511 0.825	r liquid boiled 177.06 140.91 0.28 0.00 0.02440441 Eh H2S= -0.487 C) ELLET: Sechar Sci K+ Ca++ Mg+CO3+ MgHCO3+	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41-3 amashim- 1	*C phase (mg 5198 1522 4 1 0 1 4 (mol.sg.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.546 0.847 0.835	D. .74 .87 .59 .00 .07 .66 1000/T = 0.0228400 h H2= -0.45 1982) 47, pp. 56 FeSO4+ FeCl2+ FeCl4- FeCl4- EECl+	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 8 Eh NH3= -0.538 7-577, 1983) 0.842 0.835 0.835
2019000707 	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ag efficients i	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.cgg. lts) : s (degrees urnier & Po urnier, & Po urnier, & Po urnier, & So 0.832 0.835 0.835 0.835	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 1 = 0.02440441 Eh H23= -0.487 C) tter, GRC Bullet: thermics, vol. 5; al., Geschim. Sei R+ Ca++ Mg++ Ca+C3+ MgHC03+ SaOR+	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41-3 Amashim - 1	*C phase (mg 5198 1522 4 1 0 1 4 (mol.58.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.546 0.847 0.835 0.847	De 1/kg) 74 87 55 59 000 07 66 1000/T = 0.0228400 1982) 47, pp. 56' FeS04+ 5eS1++ FeC14- 5eS1+ FeC14- 5eS1+ Al+++	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48EE-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 0.842 0.506 0.842 0.835 0.270
2019000707 	<pre>e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 {Fo 160.9 {Fo 215.1 {br efficients i </pre>	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier & Po urnier, Sg. DCF3688 et n water n water 0.863 0.822 0.835 0.511 0.825 0.635 0.498	<pre>r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00</pre>	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41-1 zmochim- i	*C phase (mg 5198 1522 4 1 0 1 4 (mol.52.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.847 0.835 0.847 0.835	D 1/kg) 74 .57 .55 .00 .07 .66 1000/T = 0.02284000 h H2= -0.45 1982) 47, pp. 56 FeS04+ FeC12+ FeC12+ FeC12+ FeC14- EsC1+ Al+++ Al9(++	<pre>egassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3=-0.538 7-577, 1983) 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.843 0.841 0.844 0.84</pre>
2019000707 ================================	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 215.1 (Ar	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.58. lts) : s (degrees urnier & Po urnier, GER AREARR et n water n water 0.863 0.832 0.835 0.835 0.832 0.835 0.832	r liquid boiled 177.06 140.91 0.28 0.00 0.02400441 Eh H23= -0.487 C) K+ Ca++ Mg+C03+ MgHC03+ SaQH+ SaQH+ SaCH	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41-3 amochim- 2	*C phase (mg 5198 1522 4 1 0 1 (mol.sg.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.546 0.847 0.835 0.847 0.850 0.825	Dx .74 .87 .55 .59 .00 .07 .66 .07 .67 .67 .67 .67 .67 .67 .67 .6	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 0.842 0.506 0.842 0.835 0.270 0.511 0.844
2019000707 	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ar	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg lts) : s (degrees urnier & Po urnier, & Po urnier, & Po urnier, & So 0.863 0.835	r liquid boiled 177.06 140.91 0.28 0.00 0.02 0.0240441 Ethers Sechart	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41-3 amochim- 3	*C phase (mg 5198 1522 4 1 0 1 -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.546 0.847 0.825 0.847 0.825 0.847	De 1/kg) 74 87 55 59 000 07 66 1000/T = 0.02284002 1982) 47, pp. 56' FeSO4+ 5eSO4+ 5eSO4+ FeC12+ FeC12+ FeC14- 5eSC4+ Alt+++ Alt+++ Alt+++ Alt++++++++++++++++++++++++++++++++++++	<pre>Gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48EE-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.835 0.842 0.835 0.835 0.835 0.270 0.511 0.844 0.835</pre>
2019000707 	<pre>e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (br efficients i </pre>	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier & Po urnier, Gro Accasos et n water 0.863 0.832 0.835 0.511 0.825 0.498 0.832 0.506	<pre>r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00</pre>	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41 imochim- 1	*C phase (mg 5198 1522 4 1 0 1 4 (mol.52.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.847 0.835 0.847 0.835 0.825 0.825 0.825 0.825 0.825	D: .74 .87 .59 .00 .07 .66 1000/T = 0.0228400: h H2= -0.45: 1982) 47, pp. 56' FeS04+ EsC14- FeC12+ FeC14- EsC1+ Alt+++ Alt(0H) 2+ Alt(0H) 4- Alg(1+)	<pre>gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.842 0.842 0.842 0.842 0.835 0.270 0.511 0.844 0.839 0.222 </pre>
2019000707 ================================	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 215.1 (Ar efficients i	Aquife (mg/kg) CO2 H23 NH3 H2 O2 CH4 N2 Aquifer 42 ns (D02-058- 1ts) : s (degrees urnier & Feo urnier, Feo Mexason et n water 0.863 0.832 0.835 0.511 0.825 0.635 0.498 0.832 0.506 0.839	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 140.91 0.28 0.00 0.02 0.02440441 Eherr, GRC Bullet: K+ Ca++ MgH+ Ca+C03+ MgAC3+ NH4+ Fe+++ Fe-++ Fe-CH	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41 amochim -	*C phase (mg 5198 1522 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	DA 1000/T 1000/T 1000/T 1000/T 0.02284000 1982) 47, pp. 56' FeS04+ FeC14- FeC14- FeC14- FeC14- FeC14- FeC14- AlySt+ Al+++ AlySt+ Al(OH) 2+ Al(OH) 4- AlsO4+ Data	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 0.842 0.506 0.842 0.835 0.270 0.511 0.844 0.839 0.839 0.839 0.839 0.839
2019000707 	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ar efficients i	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier & Po urnier, SEG 0.835 0.8	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 steam fraction) = 0.02440441 Eh H2S= -0.487 C) tter, GRC Bullet: thereight Cattors, vol. 5 al., Session Ses K+ Cattors+ Mg++ Cattors+ Mg++ Cattors+ Mg++ Fe+++ Fe+++ Fe-+++ Fe-+++ Fe-20+	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41-3 in, pp. 41-3	<pre>*C phase (mg 5198 1522 4 1 0 1 1 -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.546 0.847 0.825 0.520 0.847 0.855 0.520 0.847</pre>	De 1000/T 1000/T 0.02284003 h H2= -0.453 1982) 47, pp. 567 FeSQ4+ SeCl++ FeCl2+ FeCl4+ SeCl+ Al+++ Al(OH)2+ Al(OH)2+ Al(SO4)2- 	<pre>egassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H28 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.204E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.842 0.842 0.842 0.844 0.835 0.844 0.839 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84</pre>
2019000707 ================================	<pre>e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (br efficients i </pre>	Aquife (mg/kg) CO2 H2S NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier & Po urnier, Gre Accasos et n water 0.863 0.832 0.835 0.511 0.825 0.535 0.498 0.832 0.832 0.832 0.835 0.506 0.839 0.491 0.844	r liquid boiled 177.06 140.91 0.28 0.00 0.02400441 Eh H2S= -0.487 Callet: K+ Ca+CO3+ MgHCO3+ CACSH MgH2 Feith	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41 amochim- 2	*C phase (mg 5198 1522 4 1 0 1 4 (mel.sg.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.546 0.847 0.835 0.847 0.825 0.847 0.825 0.847 0.825 0.825 0.847 0.825 0.825 0.842 0.842	D 1000/T 55 55 59 000 07 66 1000/T = 0.02284000 h H2= -0.45 1982) 47, pp. 56 FeS04+ 5654+ FeC12+ FeC12+ FeC14- 5654+ Alth+++ Alth+++ Alth+++ Alth+++ Alth+++ Alth++++++++ Alth++++++++++++++++++++++++++++++++++++	<pre>egassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.488E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.842 0.842 0.842 0.842 0.835 0.842 0.844 0.839 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83</pre>
2019000707 ================================	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 122.4 (Fo 215.1 (Ar efficients i	Aquife (mg/kg) CO2 H23 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. s (degrees urnier & Fo urnier, & Fo urnier, & Fo urnier, & Fo 0.863 0.832 0.835 0.511 0.825 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.832 0.835 0.498 0.832 0.832 0.835 0.832 0.835 0.498 0.832 0.834 0.844 0.844 0.844	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 140.91 0.28 0.00 0.02 0.0240041 Ekter 0.024 0.02+ MgHC03+ CAQH+ MgHC03+ CAQH+ Fe+++ Fe(CH) 3- Fe(CH) 3- Fe(CH) 3- Fe(CH) 3- Fe(CH) 3- Fe(CH) 4	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- , pp. 41-3 amochim - 1	*C phase (mg 5198 1522 4 1 0 1 0 1 4 (mol.58.) 0.472 E -12, Nov. 50, 1977) Acta, vol. 0.520 0.520 0.546 0.847 0.825 0.847 0.825 0.842 0.506	DA 1000/T 1000/T 1000/T 1000/T 0.02284000 1982) 47, pp. 56' FeS04+ FeC14- FeC14- FeC14- FeC14- FeC14- FeC14- Alf++ Alf++ Al(S04) 2- Alf++ Alf2+	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.835 0.270 0.511 0.844 0.839 0.839 0.839 0.511 0.844
2019000707 ================================	e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 160.9 (Fo 215.1 (Ar efficients i	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier & Po urnier, SE0 A828288 et n water 0.863 0.832 0.835 0.844 0.844 0.832	r liquid boiled 177.06 140.91 0.28 0.00 0.0	to 100.0 Vapor CO2 H2S NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41-3 in, pp. 41-3	<pre>*C phase (mg 5198 1522 4 1 0 1 1 -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.828 0.520 0.546 0.847 0.825 0.520 0.847 0.850 0.847 0.850 0.847 0.850 0.825 0.520 0.842 0.506</pre>	De 1000/T 1000/T 1000/T 0.02284000 h H2= -0.452 1982) 47, pp. 56' FeSQ4+ 5eCl++ FeCl2+ FeCl4- 5cCl+ Al+++ Al(OH)2+ Al(OH)2+ Al(SO4)2- Al5++ Al(SO4)2- Al5++ AlF2+ AlF4-	<pre>Gassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H28 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.204E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 1 Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.842 0.835 0.842 0.835 0.839 0.839 0.839 0.844 0.844 0.839 0.844 0.839 0.844 0.844 0.839 0.844 0.844 0.839 0.844 0.844 0.844 0.839 0.844</pre>
2019000707 ================================	<pre>e components 6.0138 311.62 527.02 59.04 0.120 9.51 2.296 414.40 50.30 0.1093 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 {Fo 160.9 {Fo 215.1 {br efficients i </pre>	Aquife (mg/kg) CO2 H25 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.sg. lts) : s (degrees urnier & Po urnier, Gro Access 0.863 0.832 0.835 0.511 0.825 0.498 0.832 0.506 0.832	<pre>r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00</pre>	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41 imochim- i	<pre>*C phase (mg 5198 1522 4 1 0 1 1 0 1 1 4 (mol.52 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	D 1000/T 55 59 000 07 66 1000/T = 0.02284000 h H2= -0.45 1982) 47, pp. 56 FeSQ4+ SeCA+ FeC12+ FeC12+ FeC12+ FeC12+ FeC12+ FeC12+ FeC12+ FeC12+ FeC12+ FeC12+ AlgS++ AlgS++ AlgS++ AlgS++ AlgS++ AlgS++ AlgS+- AlgS AlgS+- A	<pre>egassing coefficient is 1.0000 Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H2O 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.842 0.842 0.842 0.842 0.842 0.844 0.844 0.844 0.839 0.8</pre>
2019000707 ================================	e components 6.0138 311.62 527.02 52.04 0.120 9.51 2.296 414.40 50.30 0.0765 0.00 gth = 0.024 ce : Catio otential (vo othermometer 182.4 (Fo 215.1 (Ar efficients i	Aquife (mg/kg) CO2 H23 NH3 H2 O2 CH4 N2 Aquifer 42 ns (mgl.58. (ts) : s (degrees urnier & Ges Accession n water 0.863 0.832 0.835 0.498 0.832 0.835 0.498 0.832 0.832 0.835 0.491 0.844 0.844 0.828 0.835 0.835 0.835 0.835 0.844 0.832 0.835 0.835 0.835 0.835 0.844 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.832 0.835 0.832 0.835 0.835 0.832 0.835 0.832 0.835 0.832 0.832 0.832 0.835 0.832 0.835 0.832 0.835 0.832 0.832 0.835 0.832 0.835 0.832 0.835	r liquid boiled 177.06 140.91 0.28 0.00 0.00 0.00 0.00 0.00 140.91 0.28 0.00	to 100.0 Vapor CO2 H23 NH3 H2 O2 CH4 N2 = 0.1045 Anions Eh CH4= - in, pp. 3- in, pp. 41- in, pp. 41-	*C phase (mg 5198 1522 4 1 0 1 0 1 4 (mol.58.) -0.472 E -12, Nov. 50, 1977) Acta, vol. 0.520 0.546 0.547 0.825 0.847 0.825 0.847 0.825 0.520 0.270 0.842 0.506 0.844 0.844	DA 1000/T 1000/T 1000/T 0.02284000 0.07 0.02284000 0.07 1982) 47, pp. 56' FeS04+ SeSA+ FeC12+ FeC12+ FeC12+ FeC12+ FeC12+ FeC14- SeSA+ Alt++ Alt0H 2+ Alt0H 2+ Alf2+ Alf2- Alf5 Alf6	Gas pressures (bar-abs.) CO2 0.216E-02 H23 0.816E-03 NH3 0.48E-05 H2 0.144E-04 O2 0.442E-53 CH4 0.121E-05 N2 0.304E-05 H20 0.101E+01 Total 0.102E+01 (Kelvin) = 2.68 L Difference (%) = 6.62 2 Eh NH3= -0.538 7-577, 1983) 0.842 0.835 0.835 0.270 0.511 0.844 0.839 0.839 0.839 0.839 0.511 0.844 0.839 0.531 0.844 0.839 0.839 0.531 0.844 0.839 0.839 0.531 0.844 0.839 0.839 0.531 0.844 0.839 0.839 0.531 0.844 0.839 0.531 0.844 0.839 0.839 0.531 0.844 0.839 0.839 0.531 0.844 0.839 0.531 0.844 0.839 0.498 0.209

2019000707		Agui	fer liquid boile	ed to 100.	o°c	De	gassing coe	fficient	is 1.0000
Chemical spec	ies in wa	ater - ppm ;	and log mole				Water pH i	s 8.525	
н+	0.00	-8.461	Ma++	0.09	-5.440	Fe (OH) 3	0.01	-7.063	
OH-	3.77	-3.654	NaCl	2.34	-4.398	Fe (OH) 4-	0.05	-6.354	
H43i04	328.27	-2.467	KC1	0.08	-5.982	FeC1+	0.00	-7.762	
H3Si04-	139.89	-2.832	Na 504-	2.74	-4.638	FeC12	0.00	-20,180	
H2SiO4	0.77	-5.085	K304-	0.95	-5.151	FeC1++	0.00	-23.554	
NaH35iO4	34.45	-3.535	Ca304	0.80	-5.229	FeC12+	0.00	-25.101	
H3BO3	23.46	-3,421	MgSO4	0.07	-6.262	FeC13	0.00	-27.821	
H2B03-	10.76	-3.752	CaCO3	5.79	-4.238	FeC14-	0.00	-31,122	
H2CO3	1.48	-4.622	MgCO3	0.04	-6.356	Fe304	0.00	-7.782	
HCO3-	229.68	-2.424	CaHCO3+	2.38	-4.629	Fe304+	0.00	-22.903	
C03	9.20	-3.814	MaHCO3+	0.01	-6.800	A1+++	0.00	-22.387	
H2S	1.02	-4.524	CaOH+	0.04	-6.193	AlOH++	0.00	-17.239	
HS-	135.75	-2.387	MgOH+	0.01	-6.776	A1 (OH) 2+	0.00	-12.401	
3	0.00	-9.724	NH4OH	0.53	-4.823	A1 (OH) 3	0.00	-8.413	
H2SO4	0.00	-19.606	NH4+	0.02	-5.871	A1 (OH) 4-	0.38	-5.393	
HSO4-	0.00	-9.082	Fe++	0.03	-6.270	A1304+	0.00	-22.956	
304	46.79	-3.312	Fe+++	0.00	-24.206	A1 (SO4) 2-	0.00	-24.474	
HF	0.00	-8.685	FeOH+	0.00	-7.283	ALF++	0.00	-19.216	
F-	2.30	-3.918	Fe (OH) 2	0.02	-6.661	A1F2+	0.00	-17.422	
C1-	412.95	-1.934	Fe (OH) 3-	0.00	-10.888	A1F3	0.00	-17.239	
Na+	518.87	-1.646	Fe (OH) 4	0.00	-14.119	A1F4-	0.00	-18.675	
K+	58.73	-2.823	Fe (OH) ++	0.00	-16.521	A1F5	0.00	-21.103	
Ca++	5.99	-3.826	Fe (OH) 2+	0.00	-9.812	A1F6	0.00	-24.472	
Logarithms of	mineral	solubility	product constan	nts (K) an	d ion act:	ivity products	(Q) in wate	r	
-	log K	log Q		log K	log Q		log K	log Q	
Adularia	-17.222	-15.774	Albite, low	-16.485	-14.594	Analcime	-13.199	-12.127	
Anhydrite	-5.607	-7.732	Calcite	-9.438	-8.227	Chalcedony	-2.841	-2.467	
Mg-Chlorite	-80.302	-76.721	Fluorite	-10.538	-12.105	Goethite	-4.674	-2.694	
Laumontite	-27.182	-24.915	Microcline	-18.598	-15.774	Magnetite	-29.703	-19.409	
Ca-Mentmer.	-85.558	-90.139	K-Mentmer.	-41.648	-45.919	Mg-Mentmer.	-86.707	-91.732	
Na-Mentmer.	-41.660	-44.739	Muscovite	-21.151	-19.245	Prehnite	-36.778	-34.025	
Pyrrhotite	-99.806	-66.114	Pyrite	-147.012	-85.569	Quartz	-3.101	-2.467	
Wairakite	-24.710	-24.915	Nellasterits	10.824	10.474	Zoisite	-35.893	-35.761	
Epidote	-43.603	-36.719	Marcasite	-123.575	-85.569	Talc	15.608	24.177	
Chrysotile	23.648	29.110	Sil. amorph.	-2.218	-2.467				

APPENDIX 4

ANALYSES OF AERATION POOL WATER

Client: Contact:	Food & Health Environment Mr J Guy C/- Food & Health Environn PO Box 34003 Pirongia 3844	al	Lab Dat Qu Orc Clie Sul	o No: te Received: te Reported: ote No: der No: ent Reference: bmitted By:	2670849 04-Aug-2021 11-Aug-2021 113055 Mr J Guy	SPv1
Sample Ty	/pe: Aqueous	82206 Boro 887	82207 Boro 1067	82208 Boro 12184	82200 Rachol	
	Sample Name:	03-Aug-2021 10:55 am	03-Aug-2021 11:05 am	03-Aug-2021 11:08 am	Spring 03-Aug-2021 11:18 am	
	Lab Number:	2670849.1	2670849.2	2670849.3	2670849.4	
Individual Te	ests					
Total Alkalini	ty g/m ³ as CaCO ₃	580	540	320	500	-
Bicarbonate	g/m³ at 25°C	500	480	390	600	-
Total Alumin	ium g/m ³	0.106	0.111	0.105	0.084	-
Total Arsenic	; g/m ³	< 0.011	< 0.011	0.011	< 0.011	-
Total Boron	g/m ³	5.8	5.0	5.5	0.0	-
Total Iron	n g/m³	11.0	< 0.21	10.8	1.35	-
Total Lithium	g/m ³	4.4	36	3.3	31	
Total Magne	sium a/m ³	< 0.21	< 0.21	< 0.21	< 0.21	-
Total Potass	ium a/m³	61	50	47	30	-
Total Dissolv	ved Silica g/m³ as SiO ₂	340	360	340	300	-
Total Sodium	a/m ³	570	570	540	580	-
Chloride	g/m ³	440	430	410	440	-
Fluoride	g/m³	2.5	3.1	3.0	3.5	-
Total Ammor	niacal-N g/m³	5.9	4.9	0.42	2.0	-
Silicon	g/m³	159	167	157	139	-
Nitrite-N	g/m³	< 0.02 #1	< 0.02	< 0.02 #1	< 0.02 #1	-
Nitrate-N	g/m³	< 0.02	< 0.02	< 0.02	< 0.02	-
Nitrate-N + N	litrite-N g/m ³	< 0.02 #1	< 0.02	< 0.02 #1	< 0.02 #1	-
Dissolved Re	eactive Phosphorus g/m ³	0.04 #2	< 0.04 #2	< 0.04 #2	< 0.04 #2	-
Sulphate	g/m ³	50	51	74	64	-
Hydrogen su	Ilphide profile*	0.0	0.5	7	0.1	
pH Fleetris - LC	pH Units	9.6	9.6	1.6	8.1	-
Electrical Co	nauctivity (EC) mS/m	267	262	253	251	-
Sample Tem	vdrogen sulphide d/m3	20.0	20.0	20.0	20.0	-
Total Sulphic	le n/m3	114	82	11.5	39	-
- otar o arpine	9		02	11.0	00	
Analyst's ^{#1} Severe i than that r ^{#2} Due to t	Comments matrix interferences required th formally achieved for the NOXN he nature of this sample a dilut inchieved for the DRP, analysis	at a dilution be p /NO2N analysis ion was perform	performed prior to s. ed prior to analys	analysis, resultir	ng in a detection l detection limit hig	limit higher gher than that

Figure A4.1 Hill Laboratories Certificate of Analysis – 11 August 2021(1 of 3).

Summary of Methods
The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix.
Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range
indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request.
Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.
Sample Type: Aqueous

lest		Default Detection Limit	Sample N
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-4
Total Digestion	Nitric acid digestion. APHA 3030 E (modified) 23rd ed. 2017.	-	1-4
pH	pH meter. APHA 4500-H* B 23 rd ed. 2017. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-4
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) 23 rd ed. 2017.	1.0 g/m³ as CaCO ₃	1-4
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D 23 rd ed. 2017.	1.0 g/m³ at 25°C	1-4
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B 23rd ed. 2017.	0.1 mS/m	1-4
Sample Temperature*	A nominal sample temperature of 20°C has been assumed by the laboratory.	0.1 °C	1-4
Total Aluminium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017 / US EPA 200.8.	0.0032 g/m ³	1-4
Total Arsenic	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017 / US EPA 200.8.	0.0011 g/m ³	1-4
Total Boron	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.0053 g/m ³	1-4
Total Calcium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23rd ed. 2017.	0.053 g/m ³	1-4
Total Iron	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.021 g/m ³	1-4
Total Lithium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23rd ed. 2017.	0.00021 g/m ³	1-4
Total Magnesium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23rd ed. 2017.	0.021 g/m ³	1-4
Total Potassium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.053 g/m ³	1-4
Total Dissolved Silica	Calculation: Silicon x 2.14.	0.005 g/m3 as SiO ₂	1-4
Total Sodium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.021 g/m ³	1-4
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23rd ed. 2017.	0.5 g/m ³	1-4
Fluoride	Direct measurement, ion selective electrode. APHA 4500-F- C 23rd ed. 2017.	0.05 g/m ³	1-4
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ - N = NH ₄ +-N + NH ₃ -N). APHA 4500-NH ₃ H (modified) 23 rd ed. 2017.	0.010 g/m³	1-4
Silicon	Analysed as received (filtration, if required), ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.005 g/m ³	1-4
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₃ - I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-4
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - NO2N. In-House.	0.0010 g/m ³	1-4
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ - I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-4
Dissolved Reactive Phosphorus	Filtered sample. Molybdenum blue colourimetry. Flow injection analyser. APHA 4500-P G (modified) 23 rd ed. 2017.	0.004 g/m ³	1-4
Jn-ionised hydrogen sulphide	Calculation from Total Sulphide, Electrical Conductivity, pH and Temperature*. *Note: For accurate calculation of the un-ionised Hydrogen Sulphide the sample temperature should be taken using a calibrated thermometer at the time of sampling and recorded on the paperwork submitted with the sample. If a sample temperature is not supplied, a nominal temperature of 20°C will show in the results table above and be used in the calculation. In this case, please interpret the un-ionised Hydrogen Sulphide result with caution. APHA 4500-S ² H (modified) 23 rd ed. 2017.	0.002 g/m³	1.4

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Total Sulphide Screen	In-line distillation, segmented flow colorimetry. APHA 4500-S ²⁻ E (modified) 23 rd ed. 2017.	0.05 g/m ³	1-4
Sulphate	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-4

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 05-Aug-2021 and 11-Aug-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

1

Ara Heron BSc (Tech) Client Services Manager - Environmental

Lab No: 2670849-SPv1

Hill Laboratories

Page 3 of 3

APPENDIX 5 GWB OUTPUT FILE – RECALCULATED IN GWB SOFTWARE COMPOSITION OF THE RESERVOIR AT 120°C AND 150°C

2	Step #	0		Xi = 0.00	900		
T P	Temperature oH = 7.693	= 120.0	С	Pressure	= 2.0	953 bars	
I	Ionic stren	gth	=	0.022025	molal		
0	Charge imba	lance	=	0.001867	eq/kg	(4.338%	error)
A	Activity of	water	=	0.999638			
5	Solvent mas	s	=	1.0000	kg		
5	Solution ma	SS	=	1.0016	kg		
N	Mineral mas	s	=	0.00000	kg		
5	Solution de	nsity	=	0.937	g/cm3		
5	Solution vi	scosity	=	0.002	poise		
0	Chlorinity		=	0.010488	molal		
0	Dissolved s	olids	=	1584	mg/kg	sol'n	
H	Hardness		=	3.90	mg/kg	sol'n as	CaCO3
	carbonate		=	3.90	mg/kg	sol'n as	CaCO3
	non-carbo	nate	=	0.00	mg/kg	sol'n as	CaCO3
C	Carbonate a	lkalinity	/=	182.81	mg/kg	sol'n as	CaCO3
l l	water type		=	Na-Cl			
E	Bulk volume		=	1.07e+03	cm3		
F	Fluid volum	e	=	1.07e+03	cm3		
N	Mineral vol	ume	=	0.000	cm3		
1	Inert volum	e	=	0.000	cm3		
F	Porosity		=	100.	%		
F	Permeabilit	у	=	98.7	cm2		

Nernst redox couples	Eh (volts	s) pe		
8 e- + 9 H+ + 504	4 = 4 H2O	+ HS-	-0.3917	7 -5.0209
No minerals in syst	em.			
Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.02048	470.1	0.8374	-1.7657
C1-	0.01047	370.4	0.8307	-2.0608
HS-	0.005244	173.1	0.8341	-2.3591
HC03-	0.003614	220.2	0.8406	-2.5174
SiO2(aq)	0.002894	173.6	1.0041	-2.5367
K+	0.001349	52.66	0.8307	-2.9505
Li+	0.0005932	4.111	0.8493	-3.2977
B(OH)3	0.0004470	27.60	1.0041	-3.3479
504	0.0004245	40.71	0.4882	-3.6835
H2S(aq)	0.0002557	8.698	1.0000	-3.5923
CO2(aq)	0.0002116	9.298	1.0000	-3.6745
H3SiO4-	0.0001232	11.70	0.8374	-3.9864
F-	0.0001074	2.037	0.8341	-4.0479
OH-	6.739e-05	1.144	0.8341	-4.2502
B(OH)4-	5.278e-05	4.154	0.8374	-4.3546
NaSO4-	3.679e-05	4.372	0.8374	-4.5114
Ca++	3.175e-05	1.271	0.5166	-4.7850
Br-	2.210e-05	1.763	0.8307	-4.7361
NaCl	2.139e-05	1.248	1.0000	-4.6698
NaH3SiO4	1.575e-05	1.857	1.0000	-4.8028
NaHCO3	1.396e-05	1.171	1.0000	-4.8551
CO3	1.376e-05	0.8246	0.4956	-5.1661
KS04-	5.195e-06	0.7010	0.8374	-5.3615
A1(OH)4-	3.425e-06	0.3249	0.8374	-5.5424
CaHCO3+	2.588e-06	0.2612	0.8448	-5.6603
CaSO4	2.563e-06	0.3483	1.0000	-5.5913
CaCO3	1.191e-06	0.1190	1.0000	-5.9240
NaF	8.551e-07	0.03585	1.0000	-6.0680
KCl	7.441e-07	0.05538	1.0000	-6.1284
NaOH	5.534e-07	0.02210	1.0000	-6.2570
CaCl+	5.316e-07	0.04009	0.8374	-6.3515
LiSO4-	4.666e-07	0.04798	0.8374	-6.4081
CaF+	1.951e-07	0.01151	0.8374	-6.7867
CaOH+	1.001e-07	0.005705	0.8374	-7.0766
Mg++	6.097e-08	0.001479	0.5422	-7.4807
H2SiO4	5.274e-08	0.004955	0.4882	-7.5892
Al(OH)3	3.410e-08	0.002656	1.0000	-7.4673
NaCO3-	3.209e-08	0.002659	0.8374	-7.5707
H+	2.344e-08	2.359e-05	0.8643	-7.6933
HF	2.226e-08	0.0004447	1.0000	-7.6524
HS04-	1.222e-08	0.001185	0.8374	-7.9899
(only species > 1	e-8 molal list	ted)		

Mineral saturation	states		1 0/14
	log Q/K		log Q/K
Clinoptil-K	4.6065s/sat	Saponite-Mg	-0.3048
Petalite	4.5009s/sat	Beidellit-H	-0.3927
Clinoptil-Ca	2.7570s/sat	Saponite-K	-0.4004
Mordenite-K	2.2986s/sat	Amrph^silica	-0.4345
Clinoptil-Na	2.2373s/sat	Talc	-0.6563
Muscovite	2.1672s/sat	Phlogopite	-0.7486
Maximum Microcli	1.7961s/sat	Lawsonite	-0.7547
K-feldspar	1.7802s/sat	Gibbsite	-0.8977
Heulandite	1.5860s/sat	Spodumene-a	-0.8993
Phengite	1.5512s/sat	Jadeite	-0.9385
Mordenite-Na	1.1210s/sat	Diaspore	-0.9766
Albite	1.0923s/sat	Saponite-H	-1.1133
Albite low	1.0922s/sat	Wairakite	-1.3216
Sanidine high	1.0667s/sat	Kalsilite	-1.3599
Illite	0.9350s/sat	Diopside	-1.4131
Laumontite	0.7370s/sat	Boehmite	-1.4503
Paragonite	0.7287s/sat	Dolomite-ord	-1.4740
Beidellit-Ca	0.6797s/sat	Dolomite	-1.4750
Beidellit-Na	0.5277s/sat	Monohydrocalcite	-1.5149
Analcime	0.5010s/sat	Clinozoisite	-1.7883
Quartz	0.3901s/sat	Zoisite	-1.8169
Beidellit-Mg	0.3833s/sat	Nepheline	-1.9794
Tridymite	0.2852s/sat	Clinoptil-Mg	-1.9978
Beidellit-K	0.2793s/sat	Boric acid	-2.0561
Albite high	0.2399s/sat	Tremolite	-2.0712
Chalcedony	0.1845s/sat	Wollastonite	-2.1042
Kaolinite	0.0693s/sat	Fluorite	-2.1404
Saponite-Ca	0.0000 sat	Pseudowollastoni	-2.3306
Calcite	0.0000 sat	Enstatite	-2.3411
Cristobalite	-0.0000 sat	Dolomite-dis	-2.4996
Pyrite	-0.0000 sat	Anorthite	-2.5351
Pyrophyllite	-0.0187	Magnesite	-2.6245
Saponite-Na	-0.1525	Anhydrite	-2.7829
Prehnite	-0.1601	Margarite	-2.8146
Aragonite	-0.2043	Analc-dehydr	-2.8798
Al-silica	-0.2814		
(only minerals w	ith log Q/K $>$ ·	-3 listed)	

		i - 1						
Casas	part	lai (ban)	fugacity	fug	coof	100	fua	
08565	press.	(Dar)	rugacity	Tug.	coer.	TOR	rug.	
Steam	1	.926	1,926		1.000*	0.2	848	
CO2(g)	0.0	2233	0.02233		1.000*	-1.6	511	
H2S(g)	0.00	7634	0.007634		1.000*	-2.1	172	
52(g)	1.109	e-15 1	.109e-15		1.000*	-14.9	550	
*no data, ga	s taken to be	ideal						
		In fl	uid		Sorbed		Кd	
Original basis	total moles	moles	mg/kg	mole	s mg	/kg	L/kg	_
H20	55.5	55.5	9.98e+05					
Al+++	3.46e-06	3.46e-06	0.0932					
B(OH)3	0.000500	0.000500	30.9					
Br-	2.21e-05	2.21e-05	1.76					
Ca++	3.89e-05	3.89e-05	1.56					
Cl-	0.0105	0.0105	371.					
F-	0.000108	0.000108	2.06					
Fe++	3.97e-14	3.97e-14	2.21e-09					
H+	0.000179	0.000179	0.180					
HCO3-	0.00386	0.00386	235.					
HS-	0.00550	0.00550	182.					
K+	0.00136	0.00136	52.9					
Li+	0.000594	0.000594	4.11					
Mg++	7.29e-08	7.29e-08	0.00177					
Na+	0.0206	0.0206	472.					
S04	0.000470	0.000470	45.0					
S102(aq)	0.00303	0.00303	182.					
Flomontal comp	ocition	-	n fluid			Conhod		
Elemental comp	total molos	molos	n Tiulu	ka	molos	Sorbeu	ma/ka	
				<u>~</u> в	110162			_
Aluminum	3.459e-06	3.459e	-06 0.	09318				
Boron	0.0004998	0.0004	998	5.395				
Bromine	2.210e-05	2.210e	-05	1.763				
Calcium	3.892e-05	3.892e	-05	1.558				
Carbon	0.003858	0.003	858	46.26				
Chlorine	0.01049	0.01	049	371.2				
Fluorine	0.0001084	0.0001	084	2.057				
Hydrogen	111.0	11	1.0 1.11	7e+05				
Iron	3.971e-14	3.971e	-14 2.21	4e-09				
Lithium	0.0005937	0.0005	937	4.114				
Magnesium	7.286e-08	7.286e	-08 0.0	01768				
Oxygen	55.53	55	.53 8.87	'0e+05				
Potassium	0.001355	0.001	355	52.90				
Silicon	0.003033	0.003	033	85.05				
Sodium	0.02057	0.02	057	472.1				
Sulfur	0.005969	0.005	969	191.1				

Step # 0		Xi = 0.0000
Temperature = 150.0 pH = 7.670	С	Pressure = 4.760 bars
Ionic strength	=	0.021962 molal
Charge imbalance	=	0.001825 eq/kg (4.248% error)
Activity of water	=	0.999639
Solvent mass	=	1.0000 kg
Solution mass	=	1.0017 kg
Mineral mass	=	0.00000 kg
Solution density	=	0.906 g/cm3
Solution viscosity	=	0.002 poise
Chlorinity	=	0.010488 molal
Dissolved solids	=	1674 mg/kg sol'n
Hardness	=	1.69 mg/kg sol'n as CaCO3
carbonate	=	1.69 mg/kg sol'n as CaCO3
non-carbonate	=	0.00 mg/kg sol'n as CaCO3
Carbonate alkalinit	y=	175.05 mg/kg sol'n as CaCO3
Water type	=	Na-Cl
Bulk volume	=	1.11e+03 cm3
Fluid volume	=	1.11e+03 cm3
Mineral volume	=	0.000 cm3
Inert volume	=	0.000 cm3
Porosity	=	100. %
Permeability	=	98.7 cm2

Nernst redox couple	Eh (volt	s) pe		
8 e- + 9 H+ + SC	04 = 4 H2O	+ HS-	-0.424	3 -5.0536
No minerals in syst	.em.			
Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.02047	469.7	0.8251	-1.7724
C1-	0.01045	370.0	0.8179	-2.0681
HS-	0.005217	172.2	0.8216	-2.3680
SiO2(aq)	0.004318	259.0	1.0043	-2.3629
HCO3-	0.003477	211.8	0.8285	-2.5405
K+	0.001347	52.56	0.8179	-2.9581
Li+	0.0005933	4.111	0.8380	-3.3035
504	0.0004200	40.28	0.4602	-3.7138
B(OH)3	0.0004158	25.67	1.0043	-3.3793
CO2(aq)	0.0003399	14.93	1.0000	-3.4686
H2S(aq)	0.0002829	9.625	1.0000	-3.5483
H3SiO4-	0.0001909	18.13	0.8251	-3.8027
OH-	0.0001451	2.463	0.8216	-3.9238
F-	0.0001070	2.029	0.8216	-4.0560
B(OH)4-	8.402e-05	6.613	0.8251	-4.1591
NaSO4-	4.016e-05	4.773	0.8251	-4.4797
NaCl	3.346e-05	1.952	1.0000	-4.4755
Br-	2.210e-05	1.763	0.8179	-4.7429
NaH3SiO4	1.931e-05	2.277	1.0000	-4.7141
Ca++	1.302e-05	0.5210	0.4896	-5.1955
CO3	8.845e-06	0.5299	0.4678	-5.3832
NaHCO3	7.593e-06	0.6368	1.0000	-5.1196
KS04-	7.425e-06	1.002	0.8251	-5.2128
Al(OH)4-	3.088e-06	0.2929	0.8251	-5.5938
CaSO4	1.519e-06	0.2064	1.0000	-5.8186
CaHCO3+	1.237e-06	0.1248	0.8331	-5.9870
NaF	1.232e-06	0.05164	1.0000	-5.9094
NaOH	1.152e-06	0.04601	1.0000	-5.9385
KCl	9.339e-07	0.06951	1.0000	-6.0297
CaCO3	5.668e-07	0.05663	1.0000	-6.2466
LiS04-	3.359e-07	0.03454	0.8251	-6.5572
CaCl+	2.505e-07	0.01889	0.8251	-6.6846
H2SiO4	1.669e-07	0.01568	0.4602	-7.1147
CaF+	1.569e-07	0.009252	0.8251	-6.8880
CaOH+	1.453e-07	0.008283	0.8251	-6.9211
HF	5.489e-08	0.001096	1.0000	-7.2605
Al(OH)3	3.811e-08	0.002967	1.0000	-7.4190
HS04-	3.486e-08	0.003378	0.8251	-7.5411
H+	2.501e-08	2.516e-05	0.8542	-7.6704
S2	1.948e-08	0.001247	0.4602	-8.0476
Mg++	1.199e-08	0.0002909	0.5162	-8.2085
(only species > 1	le-8 molal list	ted)		

Mineral saturation	log O/K		log O/K
	108 0/10		105 0/1
Petalite	4.5200s/sat	Saponite-K	-0.4427
Clinoptil-K	4.3527s/sat	Beidellit-H	-0.4583
Clinoptil-Ca	2.7333s/sat	Lawsonite	-0.6501
Clinoptil-Na	2.5539s/sat	Phlogopite	-0.6754
Mordenite-K	2.1715s/sat	Talc	-0.6846
Muscovite	1.9363s/sat	Spodumene-a	-0.7132
Maximum Microcli	1.6994s/sat	Wairakite	-0.7265
K-feldspar	1.6794s/sat	Jadeite	-0.7747
Heulandite	1.6723s/sat	Diopside	-0.9596
Phengite	1.2904s/sat	Clinozoisite	-0.9627
Mordenite-Na	1.2771s/sat	Diaspore	-0.9668
Albite	1.2233s/sat	Zoisite	-0.9877
Albite low	1.2233s/sat	Gibbsite	-1.0690
Sanidine high	1.0740s/sat	Saponite-H	-1.1033
Laumontite	0.7754s/sat	Kalsilite	-1.2072
Paragonite	0.7578s/sat	Tremolite	-1.2852
Illite	0.7534s/sat	Boehmite	-1.3585
Analcime	0.6482s/sat	Nepheline	-1.6078
Beidellit-Ca	0.5792s/sat	Wollastonite	-1.6276
Albite high	0.4743s/sat	Boric acid	-1.7555
Beidellit-Na	0.4181s/sat	Clinoptil-Mg	-1.7997
Prehnite	0.3656s/sat	Pseudowollastoni	-1.8165
Quartz	0.3547s/sat	Anorthite	-1.8176
Beidellit-Mg	0.2583s/sat	Monohydrocalcite	-1.8224
Tridymite	0.2570s/sat	Dolomite-ord	-1.9035
Chalcedony	0.1637s/sat	Dolomite	-1.9049
Beidellit-K	0.1366s/sat	Enstatite	-2.1206
Saponite-Ca	0.0000 sat	Grossular	-2.2274
Calcite	0.0000 sat	Margarite	-2.2421
Cristobalite	-0.0000 sat	Analc-dehydr	-2.4210
Pyrite	-0.0000 sat	Fluorite	-2.4316
Pyrophyllite	-0.1568	Eucryptite	-2.6627
Saponite-Na	-0.1616	Anhydrite	-2.6936
Kaolinite	-0.1862	Dolomite-dis	-2.8141
Al-silica	-0.2526	Kyanite	-2.8189
Aragonite	-0.3033	Magnesite	-2.8599
Saponite-Mg	-0.3311	Andalusite	-2.8687
Amrph^silica	-0.3848		
(only minerals w	ith log Q/K > -	3 listed)	

	nant	i al					
Gagos	part.	(ban)	fugacity	fug	coof	100	fug
Gases	press.	(bar)	lugacity	Tug	. coer	. 10g	, lug.
Steam	4	519	4 519		1 000	* 0	6550
CO2(g)	0.04	4160	0.04160		1.000	* -1.	3809
H2S(g)	0.00	9811	0.009811		1,000	* -2.	0083
52(g)	8,884	e-15 8	.884e-15		1.000	* -14.	0514
*no data,	gas taken to be	ideal					
	0						
		In fl	uid		Sorbe	d	Кd
Original ba	sis total moles	moles	mg/kg	mol	es	mg/kg	L/kg
H20	55.5	55.5	9.98e+05				
Al+++	3.13e-06	3.13e-06	0.0842				
B(OH)3	0.000500	0.000500	30.9				
Br-	2.21e-05	2.21e-05	1.76				
Ca++	1.69e-05	1.69e-05	0.676				
C1-	0.0105	0.0105	371.				
F -	0.000108	0.000108	2.06				
Fe++	3.30e-13	3.30e-13	1.84e-08				
H+	0.000160	0.000160	0.161				
HCO3-	0.00384	0.00384	234.				
HS-	0.00550	0.00550	182.				
K+	0.00136	0.00136	52.9				
Li+	0.000594	0.000594	4.11				
Mg++	1.666-08	1.66e-08	0.000402				
Na+	0.0206	0.0206	4/2.				
504	0.000470	0.000470	45.0				
5102(aq)	0.00453	0.00453	272.				
Elemental c	omnosition	т	n fluid			Sorbe	d
Liementai c	total moles	moles	mg	/kg	mo	les	mo/ko
Aluminum	3.126e-06	3.126e	-06 0	.08421			
Boron	0.0004998	0.0004	998	5.394			
Bromine	2.210e-05	2.210e	-05	1.763			
Calcium	1.690e-05	1.690e	-05 (0.6760			
Carbon	0.003835	0.003	835	45.99			
Chlorine	0.01049	0.01	.049	371.2			
Fluorine	0.0001084	0.0001	.084	2.057			
Hydrogen	111.0	11	1.0 1.1	17e+05			
Iron	3.304e-13	3.304e	-13 1.84	42e-08			
Lithium	0.0005937	0.0005	937	4.114			
Magnesium	1.656e-08	1.656e	-08 0.0	004017			
Oxygen	55.53	55	.53 8.8	70e+05			
Potassium	0.001355	0.001	.355	52.89			
Silicon	0.004528	0.004	528	127.0			
Sodium	0.02057	0.02	057	472.1			
Sulfur	0.005969	0.005	969	191.1			

www.gns.cri.nz

Principal Location

1 Fairway Drive, Avalon Lower Hutt 5010 PO Box 30368 Lower Hutt 5040 New Zealand T +64-4-570 1444 F +64-4-570 4600

Other Locations

Dunedin Research Centre 764 Cumberland Street Private Bag 1930 Dunedin 9054 New Zealand T +64-3-477 4050 F +64-3-477 5232 Wairakei Research Centre 114 Karetoto Road Private Bag 2000 Taupo 3352 New Zealand T +64-7-374 8211 F +64-7-374 8199 National Isotope Centre 30 Gracefield Road PO Box 30368 Lower Hutt 5040 New Zealand T +64-4-570 1444 F +64-4-570 4657