NERMN River and Stream Channel Monitoring Programme - 2002/03, 2003/04, 2004/05 and 2005/06 Prepared by Ingrid Pak, Environmental Engineer

Environment Bay of Plenty Environmental Publication 2006/15 September 2006

5 Quay Street P O Box 364 Whakatane NEW ZEALAND

ISSN 1175 - 9372

Working with our communities for a better environment

Acknowledgement

Efforts in data collection and manipulation by Carl Iverson, Peter Vercoe and David Marven are acknowledged, as is guidance from Peter Blackwood.

Cover Photo: Aerial photograph of Upper Whakatane River near Waikirikiri (rotated 90[°] clockwise).

i

Executive Summary

The Environment Bay of Plenty Natural Environmental Regional Monitoring Network (NERMN) River and Stream Channel Monitoring was included as part of the network for the first time in 1993/94.

The River and Stream Channel Monitoring Programme provides Environment Bay of Plenty with:

- Reliable data to identify the quantity of gravel available for extraction and the present extraction rates in the Bay of Plenty region.
- Data to allow setting maximum annual extraction rates available based on river control and river maintenance criteria.
- Data with which Environment Bay of Plenty can meet its statutory obligations under the Resource Management Act, and more effectively manage the region's resources.

Cross section surveys are carried out regularly on 15 rivers and streams, with occasional additional surveys. The data is entered into Environment Bay of Plenty's cross-sections archive system, which is used as the main tool to store and analyse the data.

Completion of the fourteenth year's monitoring programme adds to the baseline information for comparison with future surveys and allows analysis of the surveyed rivers and streams. This helps develop an understanding of the movement of gravel in the river systems of the Bay of Plenty region.

The floods experienced in the Eastern Bay of Plenty in July 1998 and July 2004 were a major influence on the changes to gravel volumes over this period. Data analysed for a previous report has shown a net deposition of some 1,900,000m³ on the floodplains of the Whakatane-Waimana and Waioeka-Otara schemes during the 1998 flood, but the majority of this was silt and sand sized particles.

The total volume of extracted material reported has been variable over the years:

Period	Total volume extracted (m ³)
1992/93	159,000
1993/94	197,000
1994/95	241,000
1995/96	203,000
1996/97	198,000
1997/98	148,000
1998/99	107,000
1999/00	69,000
2000/01	65,500
2001/02	75,000
2002/03	102,000
2003/04	141,000
2004/05	88,000
2005/06	141,300

In the **Otara River**, with a small extraction rate and continued relatively substantial deposition on the floodplain and in the main channel, it is recommended that extraction should be increased to keep the river at its recommended bed level.

Following the considerable damage caused by the 1998 storm in the upper **Waioeka Catchment**, and the likelihood of an increased supply rate over the decade following the storm, gravel accumulations and bed level changes should be carefully monitored and managed. Visual inspection of the Waioeka Gorge suggests some aggradation. New monitoring cross-sections have been established in the Gorge but to date have not been resurveyed.

In the **Waimana River**, further extractions should be limited currently in the upper reaches of the river, except where major build-ups are surveyed. It may however be necessary to use a selective combination of extraction and channel reshaping to arrest the degrading processes currently occurring, particularly to thalweg invert levels. Extraction should be suspended from the Gorge until desirable bed levels have been established.

Although river bed levels on the **Upper Whakatane River above Pekatahi** are on the rise, the previously set extraction limits of 20-30,000m³ per year from existing beaches should be adhered to until desirable bed levels have been reviewed and met. Some extra demand may be able to be met by widening the floodway where appropriate after careful assessment of the gravel movement. Extraction should be suspended within the active channel over the reach from approximately 1km upstream of the Waimana confluence to Ruatoki Bridge.

In the **Lower Whakatane River below Pekatahi** significant volume was lost during the July 2004 flood, especially in the lower sandy reaches around town. Extraction rates in this reach are fairly small.

Desirable bed levels for the **Ruarepuae Stream** were set in 1986, and surveys in recent years have shown that bed levels are near those desired. Extraction should now be limited to where gravel builds up excessively.

Continuous losses are occurring in the Lower **Rangitaiki River** through bank erosion and degradation, particularly during the July 2004 flood. There is little demand for extraction of gravel/sand from the Rangitaiki River at present. Gravel or sand extraction is not required, nor should it be encouraged anywhere along the surveyed part of the river at this stage (the heads of the hydro lakes are not surveyed). The exception is in the lower reaches, where morphological processes consequent from the effects of the Edgecumbe earthquake are likely to cause some degradation. This could be artificially encouraged to give adequate flood capacity.

Estimates for the **Whirinaki River** indicate supplies are typically of the order of 23-24,000m³ per year. Extraction should generally be encouraged in the aggrading reaches.

Gravel extraction in the **Horomanga River** should be suspended in the upper part of the reach and instead directed to the lower reaches. In the lower reaches the bed is severely perched and significant extraction is required to avoid undue flooding or avulsion (migration of the river channel). The bed level needs to initially be lowered by an average of 0.50 metres over the 70 metre design fairway width.

No extraction is currently carried out on the **Kopuriki Stream**, although resource consent applications have been made. Extraction should be encouraged in the lower reach of the stream where bed levels are aggrading and volume has been accumulating over the years.

Some extraction (of silt and/or sand) may be beneficial in some areas of the **Kaituna River** below Te Matai, if build-ups are excessive. However, the supply of sediment to the coast may be reduced by extraction.

No extraction is carried out in **Tarawera River** at present, and with the lowering of the whole bed it is recommended no sand extraction be allowed in the short to medium term.

When pressure increases on the resource, it may be necessary to redirect extractions more often. The Operations & Rural Services department of Environment Bay of Plenty has moved to ensure that appropriate extraction on the Waioeka River continues and that extraction increases on the Otara River. Extraction on the Waimana and Whakatane rivers has also been carefully directed to certain locations.

Estimates of average annual gravel supply have been included for some rivers, however these are subject to a high degree of uncertainty and the variation from year to year is large.

Contents

Exec	utive Summaryi	ii
Chap	ter 1: Introduction	1
1.1	Background	1
1.2	Specific Objectives of the River and Stream Channel Monitoring Programme.	3
1.3	Relevant Factors to Consider when Setting Extraction Levels	3
Chap	ter 2: Data Collection and Survey Methods	7
2.1	Introduction	7
2.2	Cross-Sections	7
2.3	Gravel Extraction	8
2.4	Aerial Photography1	9
2.5	Benchmark (BM) Locations1	9
Chap	ter 3: Results2	1
Chap 3.1	ter 3: Results	1 1
Chap 3.1 3.2	eter 3: Results	1 1 3
Chap 3.1 3.2 3.3	oter 3: Results	1 3 5
Chap 3.1 3.2 3.3 3.4	ter 3: Results 2 Introduction 2 Otara River 2 Waioeka River 2 Waimana River 2	1 1 5 7
Chap 3.1 3.2 3.3 3.4 3.5	Ater 3: Results 2 Introduction 2 Otara River 2 Waioeka River 2 Waimana River 2 Whakatane River above Pekatahi Bridge 3	1 1 3 5 7
Chap 3.1 3.2 3.3 3.4 3.5 3.6	ter 3: Results 2 Introduction 2 Otara River 2 Waioeka River 2 Waimana River 2 Whakatane River above Pekatahi Bridge 3 Whakatane River below Pekatahi 3	1 1 3 5 7 0 4
Chap 3.1 3.2 3.3 3.4 3.5 3.6 3.7	pter 3: Results 2 Introduction 2 Otara River 2 Waioeka River 2 Waimana River 2 Whakatane River above Pekatahi Bridge 3 Whakatane River below Pekatahi 3 Ruarepuae Stream 3	1 1 3 5 7 0 4 6
Chap 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Atter 3: Results 2 Introduction 2 Otara River 2 Waioeka River 2 Waimana River 2 Whakatane River above Pekatahi Bridge 3 Whakatane River below Pekatahi 3 Ruarepuae Stream 3 Rangitaiki River 3	1 1 3 5 7 0 4 6 7
Chap 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Atter 3: Results 2 Introduction 2 Otara River 2 Waioeka River 2 Waimana River 2 Whakatane River above Pekatahi Bridge 3 Whakatane River below Pekatahi 3 Ruarepuae Stream 3 Whirinaki River 3	1 3 5 7 4 6 7 8
Chap 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Atter 3: Results 2 Introduction 2 Otara River 2 Waioeka River 2 Waimana River 2 Whakatane River above Pekatahi Bridge 3 Whakatane River below Pekatahi 3 Ruarepuae Stream 3 Whirinaki River 3 Horomanga River 3	1 1 3 5 7 0 4 6 7 8 9

3.12	Ohutu Stream	42
3.13	Kopuriki Stream	42
3.14	Waikokopu Stream	43
3.15	Waihua Stream	43
3.16	Waihui Stream	44
3.17	Kaituna/Mangorewa Rivers	44
3.18	Tarawera River	45
3.19	Other Locations	46
Chap	oter 4: Conclusion	47
Refe	rences	49
A 19 19 <i>a</i>		ЕЛ
Appe	enaices	JI
Apper	ndix I – Hilltop	53
Apper	ndix II - River Summaries	59

1.1 Background

Environment Bay of Plenty initiated a natural environment regional monitoring network (NERMN) in July 1990. In 1993/94 an initial River and Stream Channel Monitoring programme was included as part of this network which also forms an important part of the Impact Assessment monitoring as part of the consent process. This is the fourteenth year the programme has been included. It assesses and surveys the gravel and sand resources of the Bay of Plenty region and monitors the effects of mining gravel and sand on the river systems.

This report presents the work carried out to date to develop a resource monitoring programme. The gravel resource availability and river yields, demand for aggregate, record keeping and gravel allocation systems are described and discussed.

Gravel has long been taken from some rivers and apart from monitoring by means of cross-sections, little in the way of hard data has been gathered on the effect of this extraction. On some rivers, for example, the Whakatane and Horomanga, there is concern about possible over-extraction, whilst on other rivers, e.g. the Otara, there is concern because of an abundance of gravel.

Sand has long been mined directly from the coast in the Bay of Plenty. There is a strong demand for the resource with sand continuing to be taken from old dune systems. While Environment Bay of Plenty has been in favour of mining to remove excess (but not beach mining, where it is removing more than excess), the demand is recognised. In the long term there is the possibility that extraction may be shifted to some of the region's rivers, e.g. the Kaituna River where the bed level has been rising in some places.

Figure 1.1 shows the gravel extraction sites for 1993 to 2006 in the river systems of the Bay of Plenty region.

Figure 1.1 Gravel Extraction sites in the Bay of Plenty

1.2 Specific Objectives of the River and Stream Channel Monitoring Programme

The specific objectives of Environment Bay of Plenty's NERMN River and Stream Channel Monitoring Programme are:

- To provide Environment Bay of Plenty with reliable data to identify the quantity of gravel available for extraction and the present extraction rates in the Bay of Plenty region.
- To provide a basis for setting maximum annual extraction rates.

1.3 **Relevant Factors to Consider when Setting Extraction Levels**

While this report concentrates on the overall state of the rivers in the region, it is also pertinent to consider the reasons for encouraging or limiting extraction for the stability of river systems. These are illustrated on the next two pages and noted below:

- If the bed level is too high or the waterway congested, flooding is more likely.
- If the bed level is too low, banks are high and have to take the full force of the flow during a flood. Protection works are undermined, more gravel is transported downstream to build up elsewhere. Bank protection works are more costly.

Work needs to be done to define desirable bed levels around the region, for the protection of assets of each river scheme and of the public in general.

To encourage stable channels, the following factors need to be promoted:

- Maintaining bed levels within a desirable range
- Maintaining good river alignments
- Keeping roughly in balance with natural supply rates
- Compatibility with existing assets

Chapter 2: Data Collection and Survey Methods

2.1 Introduction

Prudent river management and the Resource Management Act require an adequate understanding of both the movement of gravel down rivers and the effects of extraction. Before 1993, only intermittent resurveying of river cross sections took place on some rivers. Gravel extraction declaration returns from commercial extractors were not detailed and did not provide sufficient information on the extraction locations.

To effectively monitor gravel extraction, accurate records need to be kept of the amount of gravel removed, and the river cross sections need to be resurveyed at regular intervals. Over a sufficiently long period it is possible to determine the average annual rate of deposition.

Environment Bay of Plenty has a comprehensive system of river cross-sections established and these are regularly resurveyed. The results of the analysis of these surveys is checked against gravel extraction records to develop an understanding of the movement of gravel in the river systems of the Bay of Plenty region.

Considerable data collection has to be undertaken before the analysis can be carried out. Environment Bay of Plenty is now in a position to make an initial assessment of the resource availability and sustainability, however the variability of supply is large, so ongoing data collection will be required to update these assessments.

2.2 Cross-Sections

The surveyed cross-sections provide the raw data that is entered into the "Hilltop" Software package. Hilltop has been developed by Mark Rodgers and replaces the formerly used Ricoda software. Hilltop is now Environment Bay of Plenty's cross-section archive system and the main tool to store and analyse the cross-section data. Appendix I sets out some details of Hilltop and how it is used along with gravel extraction records to ascertain gravel transport and extraction rates.

The cross-section surveys are as programmed in Table 2.1. This programme may vary as there is a need to survey the cross-sections after significant freshes in the river systems. For example, the rivers most affected by the major floods in July 1998 and July 2004 were resurveyed ahead of the programmed date.

River Name	Date of Last Survey	No. of Cross Sections	Cross Section Spacing	Suggested Frequency of Survey	Relative Extraction Pressure	Next Survey due
Otara	January 2004	37	300-800 m	2-5 year	Low	2006-09
Waioeka	May 2004	20	300-800 m	2-5 year	Med	2006-09
Waimana *	January 2006	35	400-1200 m	1-2 year	Med	2007-08
Whakatane (below Pekatahi Bridge)	July 2004 (prior July flood)	35	300-750 m	2-5 year	Med	2006
Whakatane* (above Pekatahi Bridge)	November 2005	34	500 - 1200 m	1-2 year	Med	2006-07
Rangitaiki (Lower)	August 2004	67	300 - 700 m	3-5 year		2007-09
Rangitaiki (Waiohau)	February 1996	12	900-1200 m	5 year	Low	2006
Rangitaiki (above Aniwhenua)	November 2001	28	800-1300 m	5 year	High	2006
Whirinaki *	September 2005	8	500-1000 m	1-2 year	Med	2006-07
Tarawera	February 2006	18	700-1500 m	5 year		2011
Ohutu *	June 2004	6	400-600 m	1-2 year	Med	2006
Mangamate *	January 2006	7	350 - 550 m	1-2 year	Med	2007-08
Ruarepuae *	December 2005	7	100 m	1-2 year	Med	2006-07
Horomanga *	September 2004	14	300 - 800 m	1-2 year	Med	2006
Kopuriki *	September 2005	9	250 m	1-2 year	Med	2006-07
Kaituna (below Te Matai)	April 2005	26	500 - 600 m	3-5 year		2008-10
Kaituna (above Te Matai)	May 2005	17	400 - 800 m	3-5 year		2008-10
Mangorewa	October 2001	3	500 m	3-5 year		2006
Waiotahi	-	7			Low	
Waikokopu *	December 1996			2 year	Med	
* N	lore frequent surveys	s may be appr	opriate to match e	xtraction activitie	s.	

Tahla 2 2	Cross-Section Survey Programme as at June 2006
I able 2.2	Closs-Section Survey Frogramme as at June 2000

There is no uniform approach to spacing of cross-sections. On some rivers they are only 100m apart while on others they are as far as one kilometre apart. Environment Bay of Plenty will need to assess what distance is appropriate to effectively monitor the river system - in general this will depend on the size of the river. This nonuniformity is not a problem in itself, rather monitoring requirements should be tailored to the level of detail and accuracy of monitoring required for each river. For long-term monitoring, it is more important to be comparing new data with as long a record as possible, so existing sites should in general be maintained.

Cross-section data and in particular plots allow a ready visual appreciation of what is happening in the river at each site.

2.3 Gravel Extraction

The amounts of gravel extracted in the Bay of Plenty region over the periods July 2002 to June 2003, July 2003 to June 2004, July 2004 to June 2005, and July 2005 to June 2006 are summarised in Table 2.2. The table shows both the extractions under Resource Consent and under the Regional River Gravel Management Plan.

The information tabled here is taken from the operators' quarterly returns. In the past, operators have not provided details of the sites when submitting their returns. They are starting to supply site information with their returns and in the future they should be required to provide details associated with cross-sections where applicable.

While operators' records used to be in relation to gravel after it has been screened and processed or sold, operators are now asked to record the total quantities that have been removed from the river and not just the commercial components of the gravel removed, as this is the relevant measure required for river management purposes and determining the amount of material available for extraction. This should form the basis of a more consistent and comprehensive record of the extraction of the resource.

Reliable estimates of the gravel yield can be derived from these records and using the information from the cross-section surveys.

Contractors need to be provided with a set of plans showing the location of the cross-sections when their consent is issued.

The quantity of gravel transported by the river can be derived from "gravel balance" calculations as the difference between net change in river storage (estimated from inter-survey bed level differences), and gravel extracted (estimated from gravel extraction declaration returns over the period between cross-section surveys).

Table 2.2Shingle Extraction in the Bay of Plenty 2002/03, 2003/04, 2004/05
and 2005/06.

SHINGLE EXTRACTION BAY OF PLENTY 2002/2003

River	Location	Expirv	Consent or	Site/	Contractor	S	hinale l	Extracte	d	Subtotal	Cumulative
_			Allocation No.	Km		Sep-02	Dec-02	Mar-03	Jun-03	1	Total
Wha	katane River									•	
	Below Pekatahi										
	Van Boheman	31/05/2002	06 0232	1	J Swaps	0	0	0	0	0	0
	Blacks	30/04/2000	06 0235	1	Tracks	569	392	966		1927	1927
	Sykes	31/10/96	05 0372	1	Waiotahi	0	424	499	0	923	2850
	Pekatahi To Ruatoki Bridge										
	Lyfords		05 0372	1	Waiotahi	0	0	0	0	0	2850
	Reids Rd	31/10/96	05 0372	3	Waiotahi	7679	7505	6806	0	21990	24840
	Lillas			4		0	0	0	0	0	24840
	Rawson			5		0	0	0	0	0	24840
	Richardsons	31/10/96	05 0372	7	Waiotahi	0	0	0	0	0	24840
	Yeoman			9		0	0	0	0	0	24840
	Davies			10		0	0	0	0	0	24840
	Mahurihuri	31/10/96	05 0372	11	Waiotahi	0	0	0	0	0	24840
	Above Ruatoki Bridge										
	Te Kaiti Trust	31/10/96	05 0372	12	Waiotahi	0	0	0	0	0	24840
	Ngati Rongo	31/10/96	05 0372	13	Waiotahi	0	0	0	0	0	24840
	Opurana	31/10/96	05 0372	14	Waiotahi	0	0	0	0	0	24840
	Limeworks	31/10/96	05 0372	15	Waiotahi	0	0	0	0	0	24840
	Waikirikiri	31/10/96	05 0372	16?	Waiotahi	0	0	0	0	0	24840
Wain	nana River										
	Below Ruddicks Rd Bridge										
	Waimana Gorge, Dunstans 1					0	0	0	0	0	24840
	Waimana Gorge, Dunstans 2			2	Waiotahi	0	0	0	0	0	24840
	Wardlaw Rd	30/11/1996	05 0449	2	Wilson Brothers	0	4066	0	0	4066	28906
	Waimana Gorge, Dunstans 3			3	Waiotahi	0	0	0	0	0	28906
	Waimana Gorge, Dunstans 4			4	Waiotahi	0	0	0	0	0	28906
	Wardlaw/Ruddicks			5	Waiotahi	0	0	0	0	0	28906
	Above Ruddicks Rd Bridge							0	0		
	Flemings/Clarks / Takao's		05 0371		Waiotahi	0	0	10500	2117	12617	41523
	Above Waimana Bridge										
	Tanatana/Rokuraku (Bells Rd)		05 0449		Wilson Bros	0	0	0	0	0	41523
	Lowes					0	0	0	0	0	41523
	Mexteds					0	0	0	0	0	41523
	Lowes/Mexteds	30/11/96	05 0449	1	Wilson Brothers	0	0	2652	1070	3722	45245
	Lowes/Mexteds	31/10/96	06 0284	7	Waiotahi	0	0	0	994	994	46239
	Claytons	31/10/96	06 0284	8	Waiotahi	0	0	2454	0	2454	48693
	Len Browns	31/10/1996	06 0284	9	Waiotahi			368	0	368	49061
Horo	manga River										49061
	Above Troutbeck Rd										49061
	LOWER - Galatea Rd End 0.6 to 3.2 Km		61429	0.6-3.2km	Fletcher Challenge Forests	1046	1370	0	10452	12868	61929
	LOWER - Galatea Rd End 0.6 to 3.2 Km		61429	0.6-3.2km	D Bockman	0	0	0	1345	1345	63274
	MIDDLE - to Ohutu Outlet 3.2 to 5.7 Km		61429	3.2-5.7km	Waiotahi	0	0	0	1887	1887	65161
	TOP - downstream Troutbeck Rd 5.7 to 7.3 Km		61429	5.7-7.3km							65161
	Galatea Road Bridge	31/08/2008	05 0706	10	Waiotahi	0	0	0	0	0	65161
	Galatea Road Bridge	30/09/01	05 0737	1	Edelsten	0	0	0	0	0	65161
	Galatea Road Bridge	31/08/2008	05 0706	1	Waiotahi	0	0	0	0	0	65161
	Troutbeck Rd	30/11/2003	05 0828		Wilson Bros	3382	0	6337	0	9719	74880
	Troutbeck Rd	30/06/2004	05 0851	1	Robinsons Transport	0	40	0	0	40	74920
	Troutbeck Rd	30/06/2004	06 0300	1	Robinsons Transport	105	0	0	0	105	75025
Mang	gamate Stm										
	Troutbeck Rd	30/06/2004	06 0300	1	Robinsons Transport	0	0	0	0	0	75025
	Troutbeck Rd		05 0828	1	Wilson Bros	0	0	0	0	0	75025
Κορι	ıriki Stm										
	Blacks	31/08/2008	06 0023	1	Waiotahi	0	0	0	0	0	75025
	Galatea Road Bridge	30/09/01	05 0737	1	Edelsten	0	0	0	0	0	75025
Waik	okopu Stm										
	Galatea Road	30/06/2003	05 0706		Waiotahi	0	0	0	0	0	75025
Waih	ui Stream										
	Ruatahuna	30/04/2000	06 0443	1	Waiotahi	0	0	1798	0	1798	76823
Waio	eka River										
	S/Highway 2 Bridge	31/01/2002	05 1060	1	E-B-O-P/M Kennon	0	0	0	0	0	76823
	S/Highway 2 Bridge	1/06/1999	05 1060	1	E-B-O-P/Works Infrastructure	0	0	0	0	0	76823
	S/Highway 2 Bridge	31/12/1999	05 1060	1	E-B-O-P/Waiotahi	0	97	0	1635	1732	78555
Ľ	Petersons (Robbie's)	1/06/1999	05 0705	3	E-B-O-P/Waiotahi			6040	643	6683	85238
	S/Highway 2 Bridge	31/01/2002	05 1060	2	E.B.O.P/Eastern Bay Concrete	80	110	50	0	240	85478
	S/Highway 2 Bridge	31/12/1999	05 1060	2	E-B-O-P	0	0	0	0	0	85478
	B Smith		05 1060		E-B-O-P	2548	0	0	2662	5210	90688
	Youngs	1/06/1999	05 1060	4	E-B-O-P	0	0	0	0	0	90688
	Browns	1/06/1999	05 1060	5	E-B-O-P	0	0	0	0	0	90688
	Browns Pipeline	1/06/1999	05 1060	6	E-B-O-P	0	0	0	0	0	90688
	Michaels	30/04/2002	06 0304		Waiotahi	407	0	0	0	407	91095

	Maxwell			7		0	0	0	0	0	91095
	Youngs	31/12/2002	05 1060	8	E-B-O-P - ORS	0	0	0	0	0	91095
	Graemes Bridge	31/12/2002	05 1060	9	EBOP - ORS	0	0	0	0	0	91095
	Wairata	31/12/2002	05 1060	10	EBOP - ORS	0	0	0	0	0	91095
Otara	River										
	Scheme Area										
	Gows Road	31/01/2002	05 1061	1	E-B-O-P - ORS	0	0	0	0	0	91095
	Gows Road	31/01/2002	05 1061	1	Waiotahi	0	0	0	84	84	91179
	Carters	31/01/2002	05 1061	1	E.B.O.P - ORS/EBC	200	170	0	200	570	91749
	Goult	31/12/2002	05 1061	2	E-B-O-P - ORS	0	0	0	0	0	91749
	Lockhead		?	3	E-B-O-P-Waiotahi Contractors	0	0	0	0	0	91749
	EBA5	31/12/1999	05 1061	3	E-B-O-P-Works Infrastructure	0	0	0	0	0	91749
	Carters	?	05 1061	4	E-B-O-P-Waiotahi Contractors	0	0	0	0	0	91749
	Carters	?	05 1061	4	E-B-O-P-M Kennon	126	180	0	0	306	92055
	Carters	31/12/2002	05 1061	4	E-B-O-P - ORS	0	0	0	0	0	92055
	Kellers	31/12/2002	05 1061	5	E-B-O-P - ORS	0	0	0	0	0	92055
	M Brown	31/12/2002	05 1061	6	E-B-O-P - ORS	0	0	0	0	0	92055
	Watsons	31/12/2002	05 1061	?	E-B-O-P - ORS	0	0	0	0	0	92055
Waio	tahi River										
	Youngs		05 0448	1	Wilson Brothers	0	4006	1520	0	5526	97581
East	Coast Rivers										97581
Hawa	ai River										97581
	SH35 Bridge					0	0	0	0	0	97581
Rauk	okore River										97581
	Raukokore River	31/07/2011	51035-0		Waiotahi Contractors	776	0	0	0	776	98357
Reg.	River Gravel Management Plan	n Extractio	ons								
			Allocation #								
Waio	eka River		1107		Waiotahi Contractors	285	0	0	0	285	98642
Whai	ngaoroa										98642
	Waititi										98642
Whal	katane River										98642
	Lillas Pit (26.8 Km River Distance)		04/23	26.8	J Swap				420	420	99062
Wain	nana River										99062
	Kirkbride Rd Bridge		-		Whakatane District Council				350	350	99412
Waia	ua River										99412
Motu	River										99412
Otara	a River										99412
	Turaetoko		1115					935		935	100347
Rauk	okore River										100347
	D/S State Highway Bridge		03/12		J Swap				1600	1600	101947
				1							
-					l otal	17203	18360	40925	25459	101947	101947

SHINGLE EXTRACTION BAY OF PLENTY 2003/2004

Divo		Evning	Concept or	Sito/	Contractor		hingle	Evtrooto		Outstated	Quantum
River	Location	Expiry	Allocation No.	Site/	Contractor		sningle		ea	Subtotal	Cumulative
Wha	katano Biyor	1	Anocation No.	NIII		Sep-02	Dec-02	Mar-03	Jun-03		Total
wna	Ralane River			1		1			1		
	Below Pekatani						-	-	-		-
	Van Boheman	31/05/2002	06 0232	1	J Swaps	0	0	0	0	0	0
	Blacks	30/04/2000	06 0235	1	Tracks	569	392	966		1927	1927
	Sykes	31/10/96	05 0372	1	Waiotahi	0	424	499	0	923	2850
-	Pekatahi To Ruatoki Bridge										
	Lyfords		05 0372	1	Waiotahi	0	0	0	0	0	2850
	Reids Rd	31/10/96	05 0372	3	Waiotahi	7679	7505	6806	0	21990	24840
	Lillas			4		0	0	0	0	0	24840
	Rawson			5		0	0	0	0	0	24840
	Richardsons	31/10/96	05 0372	7	Waiotahi	0	0	0	0	0	24840
	Yeoman			9		0	0	0	0	0	24840
	Davies			10		0	0	0	0	0	24840
	Mahurihuri	31/10/96	05 0372	11	Waiotahi	0	0	0	0	0	24840
	Above Ruatoki Bridge										
	Te Kaiti Trust	31/10/96	05 0372	12	Waiotahi	0	0	0	0	0	24840
	Nasti Rongo	31/10/96	05.0372	13	Wajotahi	0	0	0	0	0	24840
-	Opurano	31/10/36	05 0372	14	Waiotahi	0	0	0	0	0	24840
		31/10/90	05 0372	14	walotalii	0	0	0	0	0	24040
	Limeworks	31/10/96	05 0372	15	waiotani	0	0	0	0	0	24640
Main		31/10/96	05 0372	16?	vvaiotani	U	0	0	0	U	24040
wain	nana River										
	Below Rudalcks Ra Bridge										
	Waimana Gorge, Dunstans 1					0	0	0	0	0	24840
	Waimana Gorge, Dunstans 2			2	Waiotahi	0	0	0	0	0	24840
	Wardlaw Rd	30/11/1996	05 0449	2	Wilson Brothers	0	4066	0	0	4066	28906
	Waimana Gorge, Dunstans 3			3	Waiotahi	0	0	0	0	0	28906
	Waimana Gorge, Dunstans 4			4	Waiotahi	0	0	0	0	0	28906
	Wardlaw/Ruddicks			5	Waiotahi	0	0	0	0	0	28906
	Above Ruddicks Rd Bridge							0	0		
	Flemings/Clarks / Takao's		05 0371		Waiotahi	0	0	10500	2117	12617	41523
	Above Waimana Bridge					1					
	Tanatana/Rokuraku (Bells Rd)		05.0449		Wilson Bros	0	0	0	0	0	41523
-			00 0440		Wildon Didd	0	0	0	0	0	41523
-	Maxtada					0	0	0	0	0	41523
	Mexteus	20/44/00	05 0440		Wilson Death are	0	0	2652	1070	2722	45245
	Lowes/wexteds	30/11/90	05 0449	7	Wilson Brothers	0	0	2052	004	004	45245
	Lowes/Mexteds	31/10/96	06 0284	/	waiotani	0	0	0454	994	994	40239
	Claytons	31/10/96	06 0284	8	Walotahi	0	0	2454	0	2454	48693
	Len Browns	31/10/1996	06 0284	9	Waiotahi			368	0	368	49061
Horo	manga River										49061
	Above Troutbeck Rd										49061
	LOWER - Galatea Rd End 0.6 to 3.2 Km		61429	0.6-3.2km	Fletcher Challenge Forests	1046	1370	0	10452	12868	61929
	LOWER - Galatea Rd End 0.6 to 3.2 Km		61429	0.6-3.2km	D Bockman	0	0	0	1345	1345	63274
	MIDDLE - to Ohutu Outlet 3.2 to 5.7 Km		61429	3.2-5.7km	Waiotahi	0	0	0	1887	1887	65161
	TOP - downstream Troutbeck Rd 5.7 to 7.3 Km		61429	5.7-7.3km							65161
	Galatea Road Bridge	31/08/2008	05 0706	10	Waiotahi	0	0	0	0	0	65161
	Galatea Road Bridge	30/09/01	05 0737	1	Edelsten	0	0	0	0	0	65161
	Galatea Road Bridge	31/08/2008	05 0706	1	Waiotahi	0	0	0	0	0	65161
	Troutbeck Rd	30/11/2003	05 0828	1	Wilson Bros	3382	0	6337	0	9719	74880
	Troutbeck Rd	30/06/2004	05 0851	1	Robinsons Transport	0	40	0	0	40	74920
<u> </u>	Troutbeck Rd	30/06/2004	06 0300	1	Robinsons Transport	105	0	0	0	105	75025
Mano	namate Stm						Ť	Ť	Ť		
	Troutbeck Rd	30/06/2004	06.0300	1	Robinsone Transport	0	0	0	Ω	0	75025
	Troutback Rd	30/00/2004	05 0000	4	Wileon Proc	0	0	0	0	0	75025
Kan	Iriki Stm		UD U828	1	WIISON BIOS	U	0	0	U	U	13023
Ropt				<u>.</u>		-	_	_	~	-	75005
	Blacks	31/08/2008	06 0023	1	Waiotahi	0	0	0	0	0	/5025
141	Galatea Road Bridge	30/09/01	05 0737	1	Edelsten	0	0	0	0	0	75025
waik	okopu Stm										
	Galatea Road	30/06/2003	05 0706		Waiotahi	0	0	0	0	0	75025
Waih	ui Stream										
L	Ruatahuna	30/04/2000	06 0443	1	Waiotahi	0	0	1798	0	1798	76823
Waio	eka River										
	S/Highway 2 Bridge	31/01/2002	05 1060	1	E-B-O-P/M Kennon	0	0	0	0	0	76823
[S/Highway 2 Bridge	1/06/1999	05 1060	1	E-B-O-P/Works Infrastructure	0	0	0	0	0	76823
	S/Highway 2 Bridge	31/12/1999	05 1060	1	E-B-O-P/Waiotahi	0	97	0	1635	1732	78555
	Petersons (Robbie's)	1/06/1999	05 0705	3	E-B-O-P/Waiotahi	1	1	6040	643	6683	85238
	S/Highway 2 Bridge	31/01/2002	05 1060	2	E.B.O.P/Eastern Bay Concrete	80	110	50	0	240	85478
<u> </u>	S/Highway 2 Bridge	31/12/1000	05 1060	2	E.B.O.D	0	0	0	0	0	85479
	R Smith	31/12/1999	05 1060	-	EROP	25/18	0	0	2662	5210	90688
<u> </u>	Newsee	4/00/1000	03 1060	· .	5-B-0-P	2,340	0	0	2002	0210	00699
<u> </u>	roungs	1/06/1999	05 1060	4	E-B-O-P	0	0	0	0	0	80006
<u> </u>	Browns	1/06/1999	05 1060	5	E-B-O-P	0	Ű	Ű	Ű	U	90688
┣	Browns Pipeline	1/06/1999	05 1060	6	E-B-O-P	U	U	U	U	U	90688
1	Michaels	30/04/2002	06 0304	1	Waiotahi	407	0	0	0	407	91095

	Maxwell			7		0	0	0	0	0	91095
	Youngs	31/12/2002	05 1060	8	E-B-O-P - ORS	0	0	0	0	0	91095
	Graemes Bridge	31/12/2002	05 1060	9	EBOP - ORS	0	0	0	0	0	91095
	Wairata	31/12/2002	05 1060	10	EBOP - ORS	0	0	0	0	0	91095
Otara	a River										
	Scheme Area										
	Gows Road	31/01/2002	05 1061	1	E-B-O-P - ORS	0	0	0	0	0	91095
	Gows Road	31/01/2002	05 1061	1	Waiotahi	0	0	0	84	84	91179
	Carters	31/01/2002	05 1061	1	E.B.O.P - ORS/EBC	200	170	0	200	570	91749
	Goult	31/12/2002	05 1061	2	E-B-O-P - ORS	0	0	0	0	0	91749
	Lockhead		?	3	E-B-O-P-Waiotahi Contractors	0	0	0	0	0	91749
	EBA5	31/12/1999	05 1061	3	E-B-O-P-Works Infrastructure	0	0	0	0	0	91749
	Carters	?	05 1061	4	E-B-O-P-Waiotahi Contractors	0	0	0	0	0	91749
	Carters	?	05 1061	4	E-B-O-P-M Kennon	126	180	0	0	306	92055
	Carters	31/12/2002	05 1061	4	E-B-O-P - ORS	0	0	0	0	0	92055
	Kellers	31/12/2002	05 1061	5	E-B-O-P - ORS	0	0	0	0	0	92055
	M Brown	31/12/2002	05 1061	6	E-B-O-P - ORS	0	0	0	0	0	92055
	Watsons	31/12/2002	05 1061	?	E-B-O-P - ORS	0	0	0	0	0	92055
Waio	tahi River										
	Youngs		05 0448	1	Wilson Brothers	0	4006	1520	0	5526	97581
East	Coast Rivers										97581
Hawa	ai River										97581
	SH35 Bridge					0	0	0	0	0	97581
Rauk	okore River										97581
	Raukokore River	31/07/2011	51035-0		Waiotahi Contractors	776	0	0	0	776	98357
Reg.	River Gravel Management Pla	n Extractio	ons								
			Allocation #								
Waio	eka River		1107		Waiotahi Contractors	285	0	0	0	285	98642
Wha	ngaoroa										98642
	Waititi										98642
Wha	katane River										98642
	Lillas Pit (26.8 Km River Distance)		04/23	26.8	J Swap				420	420	99062
Wain	nana River										99062
	Kirkbride Rd Bridge		-		Whakatane District Council				350	350	99412
Waia	ua River										99412
Motu	River										99412
Otara	River										99412
	Turaetoko		1115					935		935	100347
Rauk	okore River										100347
	D/S State Highway Bridge		03/12		J Swap				1600	1600	101947
					<u> </u>						
					lotal	17203	18360	40925	25459	101947	101947

SHINGLE EXTRACTION BAY OF PLENTY 2003/2004

River	Location/Site	Expiry	Consent or	Contractor	Shingle Extracted		Subtotal	Cumulative		
			Allocation No.		Sep-03	Dec-03	Mar-04	Jun-04		Total
Whal	katane River					•	•	•		
	Below Pekatahi									
	Blacks		61602	Tracks	528	618	466	608	2220	2220
	Sykes		50704	Waiotahi		388	5273		5661	7881
	Boheemans		50704	Waiotahi	1783				1783	9664
	Pekatahi To Ruatoki Bridge									9664
	Lyfords		50704	Waiotahi					0	9664
	Reids Rd		50704	Waiotahi					0	9664
	Richardsons		50704	Waiotahi					0	9664
			50704	Waiotahi					0	9004
			50704	Wajotabi					0	9664
	Ngati Rongo		50704	Waiotahi					0	9664
	Opurana		50704	Wajotahi					0	9664
	Limeworks		50704	Waiotahi					0	9664
	Waikirikiri		50704	Waiotahi					0	9664
Wain	nana River									9664
	Below Waimana West Bridge									9664
	Waimana Gorge, Dunstans 2		50704	Waiotahi					0	9664
	Dunstans 1		50704	Waiotahi	1574	440			2014	11678
	Wardlaw Rd		50721	Wilson Brothers			0		0	11678
L	Above Waimana West Bridge				I					11678
	Flemings/Clarks / Takao's	24/06/2003	50130	Waiotahi					0	11678
<u> </u>	Above Waimana East Bridge						-			11678
	Tanatana/Rokuraku (Bells Rd)		50721	Wilson Bros		0000	0		0	11678
	Takao		60525	Waiotahi	5069	2233	1363	7309	15974	27652
	Lowes/Mexteds		50721	Wilson Brothers	840	2569	0	2206	5615	33267
	Lowes/Mexteds		60525 (EBOP's)	Waiotahi				4125	4125	37392
Horo	manga River		60525 (EBOP'S)	waiotani					0	37392
11010	LOWER - Galatea Rd End 0.6 to 3.2 Km	31/03/2012	61429 (EBOP's)				525	0	525	37917
		31/03/2012	01423 (EBOI 3)				020		010	37917
	MIDDLE - to Ohutu Outlet 3.2 to 5.7 Km	31/03/2012	61429 (EBOP's)						0	37917
										37917
	TOP - downstream Troutbeck Rd 5.7 to 7.3 Km	31/03/2012	61429 (EBOP's)						0	37917
									0	37917
Ohut	u Stream									37917
		31/03/2012	61429 (EBOP's)	Fletcher Challenge Forests			3525	0	3525	41442
									0	41442
	Galatea Road Bridge	31/08/2008	05 0706	Waiotahi					0	41442
	Galatea Road Bridge	31/08/2008	05 0706	Waiotahi					0	41442
	Troutbeck Rd	30/06/2004	05 0851	Robinsons Transport				0	0	41442
	Troutbeck Rd	30/06/2004	06 0300	Robinsons Transport				0	0	41442
Mang	jamate Stream					0040	_		004.0	41442
Koni	Iroutbeck Rd	31/03/2012	61429 (EBOP's)	Kaingaroa Roading		2010	0		2010	44058
κορι		21/09/2009	06.0022	Wajatahi					0	44058
	Colotoo Rood Bridge	31/08/2008	61427	Edeleten	522	0	0	0	522	44038
Waik	okopu Stm	31/00/2000	01437	Edelaten	022	0	0	0	011	44580
	Galatea Road	30/06/2003	05 0706	Waiotahi	i –				0	44580
Waih	ui Stream				1					44580
	Ruatahuna	30/04/2000	06 0443	Waiotahi					0	44580
Waio	eka River									44580
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/M Kennon			0		0	44580
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/Works Infrastructure	100				100	44680
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/Waiotahi			56	1676	1732	46412
L	Petersons (Robbie's)		51130	E-B-O-P/Waiotahi	I	340	189		529	46941
	S/Highway 2 Bridge		61321 (EBOP's)	E.B.O.P/Eastern Bay Concrete	ļ		0		0	46941
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P	I		44.00		0	46941
<u> </u>	B Smith		61321 (EBOP's)	E-B-O-P		5707	4192		4192	51133
	roungs		61321 (EBOP's)	E-B-O-P/Waiotahi	l	5/2/	1240	2200	5/27 4547	00800
	Drowns		61321 (EBOP's)	E-B-O-P			1249	3298	4047	61/07
<u> </u>	Graemes Bridge		61321 (EBOP's)	E-D-U-P					0	61407
<u> </u>	Wairata		61321 (EBOP's)	EBOP - ORS	1				0	61407
Otara	a River		UNCE (LOUP S)	2001 - 01/0	1				Ť	61407
	Scheme Area									61407
	Gows Road		61322 (EBOP's)	E.B.O.P - ORS/EBC	1			220	220	61627
	Carters		61322 (EBOP's)	E.B.O.P - ORS/EBC		200	190	0	390	62017
	Goult		61322 (EBOP's)	E-B-O-P - ORS					0	62017
	Lockhead		61322 (EBOP's)	E-B-O-P-Waiotahi Contractors					0	62017
	EBA5		61322 (EBOP's)	E-B-O-P-Works Infrastructure					0	62017

-	-		-	Total	14084	20476	19278	19582	70570	141140
										70570
	Turaetoko								0	70570
Otar	a River									70570
Motu	I River		4-Mar	Motu Metal Crushing Ltd		2000	0	0		70570
Waia	ua River									70570
	L. Browns		04/29	A Rust Contracting		600	1400	0	2000	70570
	Clarkes		03/18	Works Opotiki	300				300	68570
Wain	nana River									68270
	Waititi									68270
Wha	ngaoroa									68270
	B Smiths (Gorge)		04/25	Waiotahi Contractors	3110				3110	68270
Waic	eka River			· · · · ·					0	65160
	R Armstongs		04/34	Fletcher Challenge Forests		2745			2745	65160
Hiku	rangi Stream								0	62415
-										62415
			Allocation #							62415
Rea.	River Gravel Management Plan	n Extract	ions							62415
			0.0000	United and the second s					-	62415
	Raukokore River	31/07/2011	51035-0	Wajotahi Contractors					0	62415
Raul	sokore River								3	62415
	SH35 Bridge								0	62415
Haw	ai River		50922	WORKS INITALIUCIULE			000	0		62415
Fast	Coast Rivers		50/22	Works Infratructure	1		850	0	U	62415
wald			50722	Wilson Prothers			0		0	62/15
Wair	watsons		61322 (EBOP's)	E-B-O-P - ORS					U	62415
	M Brown		61322 (EBOP's)	E-B-O-P - ORS					0	62415
	Kellers		61322 (EBOP's)	E-B-O-P - ORS					0	62415
	Kellers		61322 (EBOP's)	E-B-O-P - ORS					0	62415
	Kellers		61322 (EBOP's)	E-B-O-P - ORS					0	62415
	Carters		61322 (EBOP's)	E-B-O-P - ORS					0	62415
	Carters		61322 (EBOP's)	E-B-O-P-M Kennon	258		0	140	398	62415
	Carters		61322 (EBOP's)	E-B-O-P-Waiotahi Contractors					0	62017

SHINGLE EXTRACTION BAY OF PLENTY 2004/2005

River	Location/Site	Expiry	Consent or	Contractor	S	hinale	Extracte	bd	Subtotal	Cumulative
			Allocation No.		Sep-04	Dec-04	Mar-05	Jun-05	o abioiai	Total
Whal	katane River									
	Below Pekatahi									
	Blacks		61602	Tracks	1113	1137	316	488	3054	3054
	Sykes		50704	Waiotahi					0	3054
	Boheemans		50704	Waiotahi					0	3054
	Pekatahi To Ruatoki Bridge									3054
	Lyfords		50704	Waiotahi					0	3054
	Reids Rd		50704	Waiotahi	4616				4616	7670
	Richardsons		50704	Wajotahi					0	7670
	Mahurihuri		50704	Wajotahi					0	7670
	Above Ruatoki Bridge									7670
	Te Kaiti Trust		50704	Wajotahi					0	7670
	Ngati Rongo		50704	Wajotahi					0	7670
	Qourana		50704	Wajotahi					0	7670
	Limeworks		50704	Wajotahi					0	7670
	Waikirikiri		50704	Wajotahi					0	7670
Wain	ana River		30704	Walotani					, v	7670
main	Below Waimana West Bridge									7670
	Waimana Gorge Dunstans 2		50704	Wajotabi		1820			1820	9490
	Dunstans 1		50704	Waiotahi	5834	1020	3686		9629	10110
	Dunstans i		50704	Walotani	0	109	3000		9029	10110
	Above Waimana West Bridge		50721	Wilson Brothers	0	0			0	19119
	Above Wainana West Druge	0.4/00/00000	50100	March 191					0	19119
	Above Waimana East Prides	24/00/2003	50130	vvalotani					J	10140
	Above Waimana East Bridge				^	0		-		19119
	I anatana/Rokuraku (Bells Rd)		50721	Wilson Bros	0	U	0	0	0	19119
	Takao		60525	Waiotahi	1561	0	1022	3477	6060	25179
	Lowes/Mexteds		50721	Wilson Brothers	0	0		0	0	25179
	Lowes/Mexteds		60525 (EBOP's)	Waiotahi					0	25179
	DeGroots1			Waiotahi		2488	513		3001	28180
	DeGroots2			Waiotahi		1385	1638		3023	31203
	Len Browns		60525 (EBOP's)	Waiotahi					0	31203
Horo	manga River								0	31203
	LOWER - Galatea Rd End 0.6 to 3.2 Km	31/03/2012	61429 (EBOP's)	Wilsom Bros			0	0	0	31203
				Kaingaroa Timberlands					0	31203
				Kaingaroa Roading				4960	4960	36163
				Robinson Tspt				48	48	36211
	MIDDLE - to Ohutu Outlet 3.2 to 5.7 Km	31/03/2012	61429 (EBOP's)	Wilson Bros		140	0		140	36351
				Kaingaroa Timberlands					0	36351
				Kaingaroa Roading					0	36351
				Robinson Tspt					0	36351
									0	36351
	TOP - downstream Troutbeck Rd 5.7 to 7.3 Km	31/03/2012	61429 (EBOP's)	Wilsom Bros	1267	5989	0		7256	43607
				Kaingaroa Timberlands			0	3000	3000	46607
				Kaingaroa Roading			0		0	46607
				Robinson Tspt			0		0	46607
Ohut	u Stream									46607
		31/03/2012	61429 (EBOP's)	Fletcher Challenge Forests					0	46607
									0	46607
	Galatea Road Bridge	31/08/2008	05 0706	Waiotahi					0	46607
	Galatea Road Bridge	31/08/2008	05 0706	Waiotahi					0	46607
	Troutbeck Rd	30/06/2004	05 0851	Robinsons Transport	0				0	46607
	Troutbeck Rd	30/06/2004	06 0300	Robinsons Transport	0				0	46607
Mang	gamate Stream									46607
	Troutbeck Rd	31/03/2012	61429 (EBOP's)	Kaingaroa Roading	4103				4103	50710
Κορι	ıriki Stm			Kaingaroa Timberlands				3000	3000	53710
	Blacks	31/08/2008	06 0023	Waiotahi					0	53710
	Galatea Road Bridge	31/08/2008	61437	Edelsten	0	0	0	0	0	53710
Waik	okopu Stm									53710
	Galatea Road	30/06/2003	05 0706	Waiotahi					0	53710
Waih	ui Stream									53710
	Ruatahuna	30/04/2000	06 0443	Waiotahi					0	53710
Waio	eka River									53710
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/M Kennon	1		0	0	0	53710
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/Works Infrastructure	1		1010	150	1160	54870
	S/Highway 2 Bridge		61321 (FBOP's)	E-B-O-P/Waiotahi	9440	82	1041		10563	65433
<u> </u>	Petersons (Robbie's)		51130	E-B-O-P/Waiotahi		4794		528	5322	70755
	S/Highway 2 Bridge		61321 (FBOP's)	E.B.O.P/Eastern Bay Concrete		120	0		120	70875
	S/Highway 2 Bridge		61321 (FBOP's)	E-B-O-P			-		0	70875
	B Smith		61321 (EBOP's)	F-B-O-P			348		348	71223
<u> </u>	Youngs		61321 (EBOP's)	F-B-Q-P/Waiotahi	186	4351	4287	2630	11454	82677
	Browns		61321 (EBOP's)	F-B-O-P			0.		0	82677
	Browns Pipeline		61321 (FBOP's)	E-B-O-P					0	82677
	and the second									

	Graemes Bridge	1	61321 (EBOP's)	EBOP - ORS	1				0	82677
	Wairata		61321 (EBOP's)	EBOP - ORS					0	82677
Otara River										82677
	Scheme Area									82677
	Gows Road		61322 (EBOP's)	E.B.O.P - ORS/EBC	180				180	82857
	Carters		61322 (EBOP's)	E.B.O.P - ORS/EBC	0			60	60	82917
	Goult		61322 (EBOP's)	E-B-O-P - ORS					0	82917
	Lockhead		61322 (EBOP's)	E-B-O-P-Waiotahi Contractors					0	82917
	EBA5		61322 (EBOP's)	E-B-O-P-Works Infrastructure	0	0			0	82917
	Carters		61322 (EBOP's)	E-B-O-P-Waiotahi Contractors	1165				1165	84082
	Carters		61322 (EBOP's)	E-B-O-P-M Kennon	130		0	699	829	84911
	Carters		61322 (EBOP's)	E-B-O-P/Eastern Bay concrete			150		150	85061
	Kellers		61322 (EBOP's)	E-B-O-P - ORS					0	85061
	Kellers		61322 (EBOP's)	E-B-O-P - ORS					0	85061
	Kellers		61322 (EBOP's)	E-B-O-P - ORS					0	85061
	M Brown		61322 (EBOP's)	E-B-O-P - ORS					0	85061
	Watsons		61322 (EBOP's)	E-B-O-P - ORS					0	85061
Waio	tahi River									85061
	Youngs		50722	Wilson Brothers	0	0	0	0	0	85061
East	Coast Rivers		50922	Works Infratructure	0	0			0	85061
Waia	ua River									
Hawa	ai River									85061
	SH35 Bridge								0	85061
Rauk	okore River									85061
	Raukokore River	31/07/2011	51035-0	Waiotahi Contractors					0	85061
										85061
Reg.	River Gravel Management Plan	n Extract	ions_							85061
			Allocation #							85061
										85061
Hiku	rangi Stream								0	85061
	R Armstongs		04/34	Fletcher Challenge Forests					0	85061
Waio	eka River								0	85061
	B Smiths (Gorge)		04/25	Waiotahi Contractors					0	85061
	Anstis (Opo Dept)		Apr-48	Waiotahi Contractors				2945	2945	88006
Wha	ngaparaoa								0	88006
	Waititi								0	88006
Wain	nana River								0	88006
	Clarkes		03/18	Works Opotiki					0	88006
	L. Browns		04/29	A Rust Contracting	0	0	0	0	0	88006
Waiaua River									0	88006
Motu	I River		4-Mar	Motu Metal Crushing Ltd	0	0	0	0	0	88006
Otara	a River									88006
	Turaetoko								0	88006
										88006
				lotal	29595	22415	14011	21985	88006	88006

SHINGLE EXTRACTION BAY OF PLENTY 2005/2006

River	Location/Site	Expiry	Consent or	Contractor	Shingle Extracted		d	Subtotal	Cumulative	
	Loodiion/ono	Expiry	Allocation No.	Contractor	Sep-05	Dec-05	Mar-06	Jun-06	oubtotui	Total
Wha	katane River				00000	500 00	indi oo	0011 00		. otai
	Below Pekatahi									
	Blacks		61602	Tracks	1175	631	556	113	2475	2475
	Sykes		50704	Waiotahi	6562	1487	0	0	8049	10524
	Boheemans		50704	Waiotahi	0	0	0	0	0	10524
	Pekatahi To Ruatoki Bridge									10524
	Lyfords		50704	Waiotahi	0	0	5530	0	5530	16054
	Reids Rd		50704	Waiotahi	0	0	0	0	0	16054
	Richardsons		50704	Waiotahi	0	0	0	0	0	16054
	Mahurihuri		50704	Waiotahi	0	0	0	0	0	16054
	Above Ruatoki Bridge									16054
	Te Kaiti Trust		50704	Waiotahi	0	0	0	0	0	16054
	Ngati Rongo		50704	Waiotahi	0	0	0	0	0	16054
	Opurana		50704	Waiotahi	0	0	0	0	0	16054
	Limeworks		50704	Waiotahi	0	0	0	0	0	16054
	Waikirikiri		50704	Waiotahi	0	0	0	0	0	16054
wain	hana River									16054
	Below Waimana West Bridge					-				16054
	Waimana Gorge, Dunstans 2		50704	Waiotahi	0	0	0	0	0	16054
	Dunstans 1		50704	Waiotahi	0	0	0	0	0	16054
	Wardlaw Rd		50721	Wilson Brothers	0	0	0	0	0	16054
	Above waimana west Bridge							100		16054
	Takaos		60525 (EBOP's)	Wilson Brothers	0	0	0	183	183	16237
	Flemings/Clarks / Takao 1	24/06/2003	50130	Waiotahi	1203	0	0	0	1203	17440
	Above waimana East Bridge									17440
	Tanatana/Rokuraku (Bells Rd)		50721	Wilson Bros	0	0	0	0	0	17440
	Takao 2		60525	Waiotahi	497	0	0	0	497	1/93/
	Lowes/Mexteds		50721	Wilson Brothers	2662	2373	1765	0	6800	24/3/
	Lowes/Mexteds		60525 (EBOP's)	Waiotahi	0	0	0	0	0	24/3/
	DeGroots1			Walotani	9240	0	0	0	9240	33977
	DeGroots2			Waiotahi	0	0	0	0	0	33977
Horo	Len Browns manga River		60525 (EBOP's)	Waiotahi	0	0	0	0	0	33977
11010		24/02/2042	C1400 (EDODI=)	Wilson Dree	0	0	0	0	0	22077
		31/03/2012	61429 (EBOP'S)	Kaingaraa Timbarlanda	0	0	0	0	0	33977
				Kaingaroa Roading	0	0	0	0	0	33977
				Robinson Tent	100	0	0	0	100	34077
	MIDDLE - to Ohutu Outlet 3.2 to 5.7 Km	31/03/2012	61429 (EBOP's)	Wilson Bros	0	0	0	0	0	34077
				Kaingarga Timberlands	0	0	0	0	0	34077
				Kaingaroa Roading	0	0	0	120	120	34197
				Robinson Tspt	0	0	0	0	0	34197
									0	34197
	TOP - downstream Troutbeck Rd 5.7 to 7.3 Km	31/03/2012	61429 (EBOP's)	Wilsom Bros	0	0	0	0	0	34197
				Kaingaroa Timberlands	0	0	0	4805	4805	39002
				Kaingaroa Roading	0	4121	1675	1311	7107	46109
				Robinson Tspt	0	0	0	0	0	46109
Ohut	u Stream								0	46109
		31/03/2012	61429 (EBOP's)	Fletcher Challenge Forests	0	0	0	0	0	46109
	Galatea Road Bridge	31/08/2008	05 0706	Waiotahi	0	0	0	0	0	46109
	Galatea Road Bridge	31/08/2008	05 0706	Waiotahi	0	0	0	0	0	46109
	Troutbeck Rd	31/03/2012	61429	Kaingaroa Roading	1055	0	0	0	1055	47164
	Troutbeck Rd	30/06/2004	05 0851	Robinsons Transport	0	0	0	0	0	47164
	Troutbeck Rd	30/06/2004	06 0300	Robinsons Transport	0	0	0	0	0	47164
Mang	amate Stream									47164
	Troutbeck Rd	31/03/2012	61429 (EBOP's)	Kaingaroa Timberlands	6000	0	0	0	6000	53164
Κορι	iriki Stm			Kaingaroa Timberlands	0	0	0	0	0	53164
ļ	Blacks	31/08/2008	06 0023	Waiotahi	0	0	0	0	0	53164
L	Galatea Road Bridge	31/08/2008	61437	Edelsten	0	0	450	0	450	53614
Waik	okopu Stm									53614
	Galatea Road	30/06/2003	05 0706	Waiotahi	0	0	0	0	0	53614
Waih	ui Stream									53614
	Ruatahuna	30/04/2000	06 0443	Waiotahi	0	0	0	0	0	53614
Waio	eka River				ļ					53614
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/M Kennon	0	0	0	0	0	53614
<u> </u>	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/Works Infrastructure	200	0	0	206	406	54020
	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P/Waiotahi	204	0	0	0	204	54224
	Petersons (Robbie's)		51130	E-B-O-P/Waiotahi	1055	192	0	0	1247	55471
 	S/Highway 2 Bridge		61321 (EBOP's)	E.B.O.P/Eastern Bay Concrete	0	0	0	0	0	55471
<u> </u>	S/Highway 2 Bridge		61321 (EBOP's)	E-B-O-P	0	0	0	0	0	55471
 	B Smith		61321 (EBOP's)	E-B-O-P	927	5290	1749	0	7966	63437
<u> </u>	Youngs		61321 (EBOP's)	E-B-O-P/Waiotahi	0	0	1754	4634	6388	69825
	Mikes				0	3403	0	0	3403	73228

	Youngs		61322 (EBOP's)	E B O P / Works Infrastructure	0	0	650	0	650	73878
	Riverloch		61321 (EBOP's)	E-B-O-P/Waiotahi	518	0	951	0	1469	75347
	Browns		61321 (EBOP's)	E-B-O-P	0	0	0	0	0	75347
	Browns Pipeline		61321 (EBOP's)	E-B-O-P	0	0	0	0	0	75347
	Graemes Bridge		61321 (EBOP's)	EBOP - ORS	0	0	0	0	0	75347
	Wairata		61321 (EBOP's)	EBOP - ORS	750	0	0	0	750	76097
Otara	a River									76097
	Scheme Area									76097
	Gows Road		61322 (EBOP's)	E.B.O.P - ORS/EBC	150	120	130	100	500	76597
	Carters		61322 (EBOP's)	E.B.O.P - ORS/EBC	0	0	0	0	0	76597
	Goult		61322 (EBOP's)	E-B-O-P - ORS	0	0	0	0	0	76597
	Lockhead		61322 (EBOP's)	E-B-O-P-Waiotahi Contractors	0	0	0	0	0	76597
	EBA5		61322 (EBOP's)	E-B-O-P-Works Infrastructure	0	0	0	0	0	76597
	Carters		61322 (EBOP's)	E-B-O-P-Waiotahi Contractors	0	1176	36	4828	6040	82637
	Carters		61322 (EBOP's)	E-B-O-P-M Kennon	80	166	0	0	246	82883
	Carters		61322 (EBOP's)	E-B-O-P/Eastern Bay concrete	0	0	0	0	0	82883
	Carters		61323 (EBOP's)	E-B-O-P-Works Infrastructure	0	0	0	135	135	83018
	Kellers		61322 (EBOP's)	E-B-O-P - Works Infractructure	0	72	0	0	72	83090
L	Kellers	ļ	61322 (EBOP's)	E-B-O-P - ORS	0	0	0	0	0	83090
	Kellers		61322 (EBOP's)	E-B-O-P - ORS	0	0	0	0	0	83090
	M Brown		61322 (EBOP's)	E-B-O-P - ORS	0	0	0	0	0	83090
	Watsons		61322 (EBOP's)	E-B-O-P - ORS					0	83090
Waio	tahi River									83090
	Youngs		50722	Wilson Brothers	0	0	0	0	0	83090
	Addisons		50722	Wilson Brothers	2095	981	248	2078	5402	88492
East Coast Rivers		50922	Works Infratructure	0	0	0	0	0	88492	
Walaua River						0		0	88492	
Waira	ata River			E-B-O-P - Works Infractructure	0	0	300	0	300	88792
Hawa	ai River									88792
	SH35 Bridge				0	0	0	0	0	88792
Rauk										88792
	Raukokore River	31/07/2011	51035-0	Waiotahi Contractors	0	0	0	0	0	88792
_										88792
Reg.	eg. River Gravel Management Plan Extractio		ns							88792
		-	Allocation #							88792
										88792
ніки	rangi Stream									88792
	R Armstongs	-	04/34	Fletcher Challenge Forests	0	0	0	0	0	88792
waio										88792
	B Smiths (Gorge)	1	04/25	Waiotahi Contractors	0	0	0	0	0	88792
Whee	Anstis (Opo Dept)		Apr-48	Waiotahi Contractors	120	0	272	0	392	89184
wna	ngaparaoa					<u> </u>	<u> </u>		0	89184
Wain	Waititi				0	0	0	0	0	89184
wain									0	89184
	Clarkes		03/18	Works Opotiki	0	0	0	0	0	89184
Waia			04/29	A Rust Contracting	0	0	120	0	120	89184
Walaud Kiver		40.0.1	Works Intratructure	50000	0	120	0	50000	89304 120204	
Motu			19-Oct	Works Intratructure	50000	0	1000	0	1000	140304
Otar		<u> </u>	2/21/06	K and M Earthworks	0	0	000		1000	140304
Rauk		<u> </u>		Wede lefeteret av	0	0	082	0	082	140304
Nauk				WORKS INTRATRUCTURE	0	0	903	0	903	141207
<u> </u>	Turaeloko					U	U	- ⁰	U	141207
L	1		1	lotal	84593	20012	18169	18513	141287	141287
					3.000					

2.4 Aerial Photography

Regular aerial photography enables visual evaluation of gravel accumulations and identification of areas where extraction can be directed to. A regular programme of aerial photography is undertaken on the river systems.

2.5 **Benchmark (BM) Locations**

The horizontal location of each of the benchmarks does not need to be accurately defined for the use of the volume calculation command in Hilltop, as the process of determining the volumes between cross-sections only uses the cross-sectional area and the channel distance between each cross-section. Locating the benchmarks is, however, important for other river management work.

There are a total of 746 benchmarks (more or less) in the cross-section survey programme. Most benchmarks were established prior to 1996. Most rivers' benchmarks have now been located by GPS. Some benchmarks that are difficult to

locate because of tree cover have not been precisely located. A few benchmarks are replaced each year through loss or damage, and require relocating. New benchmarks on the Kopuriki, Waikokopu and Waihua streams have not yet been located by GPS.

In the past, the GPS (Global Positioning System) unit has been used to locate the benchmarks to a position accuracy of within 2-4 metres horizontally. More recently, the RTK (Real Time Kinematic) GPS unit has been used to relocate existing benchmarks to achieve survey grade results, i.e. centimetre accuracy.

3.1 Introduction

The data collected for this report allows a comparison with the previously collected and the baseline information. Environment Bay of Plenty can now develop a methodology to allocate gravel extraction in each resource area. The following pages summarise the situation that exists at present in each of the region's river/stream systems.

The floods in July 1998 and the more recent flood in July 2004 have caused significant changes to gravel volumes and will affect the management of gravel for several years. The analysis has been more complex than in the past because of the need to separate out changes in gravel volumes from deposition of silt. For the wider rivers with obvious floodplains, this has been done by defining the limits of the main channel (the "design channel"), and running the analysis separately for the full channel width as well as the active channel width. Material within the active channel limits is assumed to be predominantly gravel, whereas material outside these limits is assumed to be silt or sand.

River		Flo (i	odplain mainly :	i deposi silt and	ition (^{m3} sand))	Active chanel change (m ³) (mainly gravel)							
	1998/99	1999/00	2000/02	2002/03	2003/04	2004/05	2005/06	1998/99	1999/00	2000/02	2002/03	2003/04	2004/05	2005/06
Otara	204,500	310,800			189,000			57,600	83,400			139,200		
Waioeka	510,000	162,200			160,900			2,500	6,000			14,900		
Waimana	493,000	65,000	60,000		-83,000	184,900	-3,700	3,000	- 165,000	-47,300		-10,200	-43,100	7,400
Whakatane from Treatment Plant to Pekatahi (XS15 - XS25)	141,200			23,000	65,000			40,700			30,000	1,300		
Whakatane above Pekatahi (XS25a – XS44)	300,800	19,300	-2,600	-61,400	123,000		-38.700	18,600	40,300	78,300	19,000	-56,400		125,600

Table 3.1Comparison of Riverbed Volume Changes between the reports1998/99, 1999/2000, 2000-2002, and 2002-2006.

During the 1998 floods, an estimated (net) 1,900,000m³ of sediment was deposited on the floodplains of the Whakatane-Waimana and Waioeka-Otara schemes, the majority of which was sand and silt sized particles. But it is evident from the surveys taken in between the years 1999 and 2000 that there has actually been a loss of this sediment in the Whakatane-Waimana scheme and to a lesser extent in the Waioeka floodplain whilst the Otara River sees continuing deposition on its floodplains due to settlement of the silt (refer Table 3.1).

Figure 3.1 shows estimates of average gravel supply rates and short and medium term (2yr and 10yr) extraction rates for many of the Bay of Plenty rivers. Note that these are indicative estimates only and should be revised as more information becomes available. Gravel supply will vary greatly from year to year.

Gravel Extraction versus Estimated Supply Rate

3.2 Otara River

The most recent survey on the Otara River has been completed in January 2004.

A baseline survey was done in 1993 with resurveys in January 1996, October 1998 and July 2000. A comparison has also been made with surveys in 1966 and 1980, although some interpretation is required when assessing these older surveys which may not have been in exactly the same place as more recent surveys.

The volume analysis has been split into a "design width" (which attempts to describe the changes in gravel volume in the main river channel), and the full surveyed width, (which includes changes of the berms that are more likely to contain a large proportion of silt and sand). The gravel/sand interface across and down the river will change with time, but the comparison is still useful.

Full width analysis:

2000-2004:

For the full width, the 2004 survey shows that a total volume of **328,200m³ were deposited** since the previous survey in 2000. Note that this period covers the floods in October 2003. The largest deposition occurred again in the reach of cross-sections 31 and 32, but generally the volume gains were spread relatively evenly over the entire river reach analysed.

1996-1998-2000:

The deposition between October 1998 and August 2000 was around one and a half (1.5) times as high as the deposition between March 96 and October 98 (including the floods of July 1998) at 394,000 m³. The major sites of deposition were sections 31-36, where around 293,000 m³ of material was deposited. The most significant effect of this deposition is likely to be a reduced floodway capacity of the river between sections 31 - 36, although the propensity for channels to meander may also increase. Floodway capacity has been examined as part of the Floodplain Management Plan for the Waioeka-Otara scheme. (Cross-sections 12 and 31 prior to 1993 were left out of the analysis, as their locations do not appear to correspond with more recent cross-sections).

The full width analysis indicates there has been an overall increase in bed levels at almost every cross-section since 1966, with an average rate of deposition at 88,000 m³ per year.

Design width analysis:

2000-2004:

The design width analysis for the 2004 survey shows that a total volume of **139,200m³ were gained** within the channel since 2000. This is a significantly larger number than between previous surveys. Some losses occurred at the upstream end (cross-sections 34 and 35 and 37 to 40) totalling some 33,000m³, but these were by far outweighed by the gains further downstream.

1993-1996-1998-2000:

Between October 1998 and July 2000, the design width analysis shows that net deposition within the normal channel and immediate fairway has increased to about

83,400 m³ as compared to 57,600 m³ between 1996 and 1998. Between sections 16 to 26, there has been a marked increase in bed level. The most significant gain is at section 34, where 24,910 m³ of gravel was deposited between 1998 and 2000.

Since 1993, there seems to be a trend of increasing net deposition of gravel in the river. In general, a loss of gravel has occurred above section 34, with gains at most sections below section 34. A net deposition of one million m³ on the floodplain was observed, with only 281,400 m³ of this within the design channel main fairway (1993-2004). This shows that a large proportion of the deposition that has occurred is outside the main fairway, on the floodplain between the stopbanks.

Gravel extraction and recommendation:

Little extraction is carried out on this river. The amount of gravel extracted was 1,895m³ during 2002/03, 1,008m³ during 2003/04, 2,384m³ during 2004/05, and 6993m³ during 2005/06. Initially, some 2,200m³ per year averaged over the decade ended in 1999 was estimated. The average extraction for the last decade (1996 to 2006) has was close to 2,700m³ per year.

The Operations and Rural Services Department of Environment Bay of Plenty has moved to increase extraction on this river by obtaining resource consent to remove gravel at specific sites. It may also be necessary to encourage removal of silt and sand (for use as fill) from the main fairway, which has been done recently along parts of the river where stopbank upgrades were carried out.

The long-term analysis put the average net supply rate of deposited material into this system to around 55,600 m³ annually, although only a portion is gravel. In 1996 to 2000, this portion was around 20%. Analysis of data collected since 1993 shows that the gravel supply rate is expected to average 25,600m³ per year.

With a small extraction rate and substantial deposition on the floodplain and in the main channel over the past years, it is recommended that extraction should be increased in this river to keep the river at its recommended bed level. However, the lack of demand for gravel from this river (poor quality and remoteness of sites) proves to make a sound gravel management difficult.

3.3 Waioeka River

The most recent survey on the Waioeka River was completed in May 2004.

A baseline survey was completed in October 1993, with resurveys carried out in January 1996, September 1998 and September 2000. A comparison has also been made with surveys in 1966 and 1980, although some interpretation is required when assessing these older surveys that may not have been in exactly the same place as more recent surveys.

Full width analysis:

2000-2004:

The full width analysis for the 2004 survey shows a total **volume gain 175,800m**³. The bulk of this gain occurred at cross-sections 9 and 10 (70,600m³ and 79,800m³), with some more gains in the reach downstream of cross-section 13, and some losses in the reach upstream of cross-section 13.

1993-1996-1998-2000:

Over the full width of the sections, a net increase in volume of material stored of $512,000m^3$ has been calculated between 1996 and 1998 and 182,000 m³ has been calculated between 1998 and 2000. From the 2000 survey, gains are evident at all cross-sections above the confluence with the Otara River except at cross-sections 3, 8, 11 to13, and 18 to 19. The largest gains are at cross sections 19 and 20, with estimated gains in the region of 80 – 90,000 m³. A large portion of this gain is silt and sand sized particles. The largest loss is at cross-section 12 with an estimated 20,000 m³ of material lost.

The net increase in volume of material over the full width of the river between 1996 and 1998 includes an increase of 100,000m³ at section 19. The total material stored is larger than that of 1999/2000. Most of it is the contribution from the flood of July 1998. Between 1993 and 1996 there was a net aggradation of some 24,000m³, mostly between cross-sections 10 and 16.

Design width analysis:

2000-2004:

The 2004 analysis for the design width shows a total **volume gain of 14,900m**³. The losses in the upper reach (46,200m3 between cross-sections 14 and 20) were outweighed by the gains in the lower reach (cross-section 2 and 4 to 13).

1998-2000:

Between September 1998 and September 2000, within the design width of the river fairway there were gains amounting to only 5,980 m³. It is worth noting that the reach between the river mouth and section 4 were not resurveyed in 2000 and therefore is not inclusive of the value stated above. The largest loss was noted at cross-section 12, where scouring of the bed has been observed. Conversely, the bed level has aggraded at cross-sections 9-10. Sections 15 to 17 have all experienced some right bank erosion. The thalweg level has decreased by some 2m at cross-section 7, but has increased by around 1.5m at cross-section 9. The small channel volume change indicates that this river system was fairly stable at the time.

The large difference between the deposition on the full width (175,800m³) and the deposition within the channel (14,900m³) suggests that most of the deposition is made up of silt deposited on the floodplain.

Gravel extractions and recommendations:

The amount of gravel extracted was $14,557m^3$ in 2002/03, $19.937m^3$ in 2003/04, $31,912m^3$ in 2004/05, and 22,875m³ in 2005/06.

A moderate amount of extraction, some $29,000m^3$ on average over the last ten years, is taken from the Waioeka River each year. $45,000m^3$ were removed in 1997/1998, $36,000m^3$ in 1998/99, $25,440m^3$ in 1999/2000, $19,086m^3$ in 2000/01, and $24,523m^3$ in 2002/03.

The Operations and Rural Services department of Environment Bay of Plenty has moved to control extraction on this river by obtaining resource consent to remove gravel at specific sites. The purpose is to prevent potential flooding in some areas (although the river has widened in some places) and decrease the stability of the river meander pattern that may occur due to continued aggradation of the river bed. Gravel extraction in appropriate locations can reduce the flood risk and help to stabilise the river. The main deposition within the fairway in between 1996 and 1998 has been in the stretch from cross-section 10 to cross-section 14 and at cross-sections 7 and 8, whereas, in 1999 to 2000, the main deposition within the fairway has been at cross-sections 9 to 10 and 14 to 15.

Over the longer term, comparisons with surveys in 1966 and 1980 show further deposition of some 350,000m³, mostly since 1980 (although diversion cuts in the 1970's may affect the validity of the 1966 calculations). All cross-sections except 2, 12, 13, and 20 have aggraded since 1966, particularly 5, 6, 7, 14 and 15. Gravel extraction over the last 10 years (29,000m³ per year) is very similar to the estimated long term supply rate of 30,000m³ per year in this river (inclusive of the large silt deposition in 1998).

No particular need to change typical gravel extraction practices on this river is evident from the analysis, even following the major flood in 1998. However, a catchment condition survey carried out after the flood showed there was considerable damage caused to the upper Waioeka catchment by this storm. Therefore, it is likely that the supply rate will increase over the next decade and should be carefully monitored and managed. Visual inspections of the Waioeka Gorge suggest some aggradation; new monitoring cross-sections have been established here but they have not been resurveyed as yet.

Sediment build-up on the berms is of more concern for flood capacity. In the first July 1998 flood peak, overtopping of rural stopbanks (between section 16 and 17) at below design flood flows indicate that bed and/or berm levels may have increased in this reach in recent years.

3.4 Waimana River

Since the last report, the Waimana River has been resurveyed in December 2003, September 2004 (after the floods in July that year), and in January 2006.

The analysis has tried to separate out changes in gravel volumes and silt deposition by dividing each cross-section into the "active channel" and the wider floodplain since 1992.

Full Width Analysis:

1998-1999:

Over the full floodplain width, the overall loss for 1998/1999 was calculated to be $100,000 \text{ m}^3$. Since this is smaller than the design channel losses, one can assume that there has been some build up of silt along the floodplain. This amounted to aggradation on the floodplain to the order of 62,700 m³. The major losses (of around $40,000 \text{ m}^3$ and $60,000 \text{ m}^3$) were found at sections 29 and 30, where there had been major gains in 1996/1998. It can be argued that the river has returned these sections to their equilibrium levels. The previous analysis (1996 to 1998) showed a net aggradation of some 496,000 m³ of material, which was attributed to a build up of silt along the floodplain. The river system appears to have naturally balanced itself.

1999-2001:

Over the full width including the floodplain, the 2001 survey showed an overall volume gain of 12,500m³. Taking into the account the losses in the active channel this suggests that there has been a build up on the floodplains of 60,000m³. Major
losses were observed at cross-sections 30 to 32 (50,000m³), and cross-sections 4 to 6 (41,500m³). (Some of the cross-sections had an incomplete survey done on the floodplains. Therefore these cross-sections were limited to the active channel widths for the volume analysis.)

2001-2003:

Looking at the full width of the surveyed cross-sections, including the floodplain, a total **volume loss of 93,000m³** was observed in the period from July 2001 to December 2003. Major volume losses at cross-sections 22 to 24 and 27 to 32 outweighed some gains in the gorge at cross-sections 2 to 8, and cross-sections 17, 25 and 26.

2003-2004:

The following survey after the floods in July 2004 showed that a total volume of **142,000m³ was gained** over the full width in the period from December 2003 to September 2004. Most of this gain occurred at cross-sections 2 and 3, 6a to 17, 20 to 22, 28 to 30, and 33. Some losses occurred at cross-sections 4 and 5, 18 and 19, 23 to 27, and 31. The figures that were calculated for the active channel and the full width for this period suggest that the floods in July 2004 have deposited 99,000m³ of sediment onto the floodplain, most of which can be expected to be fine sediment rather than gravel.

2004-2006:

Between the September 2004 and February 2006 surveys, only **3,700m³ of volume were gained** over the full width. Some losses in the upper reach at cross-sections 27, 28, 30 and 31 were outweighed by volume gains at cross-sections 6, 8 and 9, and between cross-sections 17 and 26.

Active Channel Analysis:

1992-1996:

In the active channel, between 1992 and 1996, the major losses were in the gorge, below section 10, where some 120,000m³ were lost, and between sections 20 and 30, where some 85,000m³ were lost. 51,000m³ were gained between sections 13 and 19 and 49,000m³ were gained between sections 30 and 32. Above cross-section 13, 64,000m³ was lost between 1992 and 1994, but 81,000m³ were gained between 1994 and 1996. The largest losses were at cross-sections 6a, 7, 20 and 29, while the largest gains were at cross-sections 14, 15 and 30-32.

1996-1998:

In the active channel, between 1996 and 1998, the net bed change over the whole length surveyed was a tiny 3,000m³ (aggradation). The major losses (bank erosion) observed at cross-section 3, 4, 5, 23, 25, 29, 30, and 31 were entirely compensated for by a rise in level, particularly at cross-section 1, 6a, 19, 20, 26, 27, 28, 32, and 33. Relatively small cross-section changes were observed between cross-section 7 and 16 and a bank erosion of about 60m wide was observed at cross-section 3.

1998-1999:

From the analysis of the river active channel changes between 1998 and 1999, it was observed that there had been a large decrease in the river channel volume, amounting to a net loss of $165,000 \text{ m}^3$ of material. Most of this degradation is

centred on the upper reach between cross sections 29-32. There was bank erosion at cross-sections 7, 30, 31, 32 and 33 and a decrease in bed level at cross-sections 10a and 14. Conversely, bed aggradation was observed at cross-section 18 and 19. Sections 22 and 23 experienced a build up of gravel on the left bank and a loss on the right bank, suggesting a small change beginning in the river meandering pattern. There was a large amount of bank erosion at cross-section 29, which was somewhat tempered by an increase in the bed level. The large losses in the upper reaches of the river suggest that the excess of gravel that was apparent in 1998 has moved downstream.

1999-2001:

The analysis of the 2001 survey shows that a total volume of 47,000m³ has been lost in the active channel since the previous survey in 1999. Again, losses are centred around cross-sections 27 to 32 where a total volume of 78,500m³ was lost. Bed levels have dropped in this reach too, and bank erosion seems to be an ongoing process. An estimated volume of 212,500m³ was eroded from the banks in this reach. 12,000m³ were lost at cross-sections 23 to 25, and 16,000m³ were lost just above the confluence into the Whakatane River at cross-sections 1 to 6 with the river degrading in this lower reach. Bank erosion is also observed at cross-sections 18 and 24. Rising river levels and the highest volume gains were observed between cross-sections 17 and 19.

It is noted that the 2001 survey at cross-section 33 has not been included in any volume analysis as the data suggests there may have been a survey error. Volume analysis at this site has been carried out again from the 2003 survey onwards.

Also, the 2001 surveys at cross-sections 13 and 29 were incomplete and therefore have been omitted from the analysis. To still be able to get volume figures at and around these cross-sections it has been assumed that the change in cross-sectional area was zero and the volumes have been calculated from this assumption.

2001-2003:

In the active channel, the December 2003 survey showed an overall **volume loss of 10,000m**³ over the entire reach. The bulk of these losses occurred in the upper reach at cross-sections 27 to 32, and also at cross-sections 22 to 24 and 11 to 12. Contrary to earlier surveys, the reach through the gorge accumulated volume between cross-sections 1 to 8 and at cross-section 10.

2003-2004:

The next survey was completed in September 2004 after the extensive floods in July 2004. Volume analysis shows that over the period from December 2003 to September 2004, **43,000m³ of volume were lost** in the active channel over the entire reach. It can be expected that most of this was shifted during the floods. Most of this loss occurred at cross-sections 4 and 5, 18 and 19, 23 to 27, and 31 and 32. Volume gains occurred at cross-sections 2 and 3, 6a and 7, 11 and 12, 20 and 21, 28 and 29, and 33. At cross-section 4 erosion has been taking place on the right bank and at cross-sections 24 and 31 on the left bank. Extraction was carried out at the time of survey at cross-section 18.

2004-2006:

During the following period from September 2004 to February 2006, some **7,400m³** of volume were gained overall in the active channel, with some significant gains

centred around cross-sections 18 and 19 (33,300m³). Losses occurred at 30 and 31 (34,500m³).

Gravel Extraction and Recommendations:

Moderate extraction is carried out on this river: $33,890m^3$ in 1996/97, $16,400m^3$ in 1997/98, $10,580m^3$ in 1998/99, $7,530m^3$ in 1999/2000, $2,030m^3$ in 2000/01, $6,934m^3$ in 2001/02, $24,571m^3$ in 2002/03, $30,028m^3$ in 2003/04, $23,533m^3$ in 2004/05, and $17,923m^3$ in 2005/06.

Extraction has generally been delicately directed towards specific locations or reaches where it is seen to be beneficial to the system. Desirable bed levels have not yet been defined for this river. A careful assessment of desirable bed levels is needed, over the whole of the river, before any major extraction can be carried out.

An attempt has been made to utilise cross-section surveys from 1964 to gain an understanding of long-term bed level developments. Not all of the 1964 cross-sections match the locations of the current cross-section benchmarks (the locations of the 1964 cross-sections were taken from the original scheme plans), so a comparison of bed levels is limited. However, for most of the cross-sections the match looks reasonable. Generally, there are more cross-sections where degradation has occurred since 1964 than aggrading cross-sections (9:4).

In light of the analysis of the recent surveys, where large material losses and bank erosion were observed between cross-section 27 to 32, it is advisable to limit gravel extraction at the upper reach of the river until further evidence of aggradation is confirmed by survey. It may however be necessary to use a selective combination of extraction and channel reshaping to arrest the degrading processes currently occurring.

Close monitoring will need to continue over the next few years to assess the effects of extraction, the river training works of the Middle Reaches scheme and the effects of the floods in July 1998 and July 2004. Extraction should be discouraged from the gorge until desirable bed levels have been established.

The average gravel extraction rate on this river over the last 10 year is 18,000m³ per year, whereas the gravel supply rate is estimated to around 20,000 m³ per year. This indicates this level of extraction is sustainable in the long term. The loss of volume in the active channel should be carefully monitored and extraction adjusted accordingly. Of the estimated net supply rate of gravel into the Waimana River, a considerable throughput is to the Whakatane River. There may be a lag of several years before a wave of gravel passes completely through the system.

3.5 Whakatane River above Pekatahi Bridge

Resurveys of the Upper Whakatane River cross-sections were completed in June 2003, August 2004 and January 2006.

As in previous reports, at cross-sections 25a to 44 the analysis was run on the full width as well as the "active channel" width, where the gravel is assumed to be mainly stored. In the braided reach above cross-section 44 this distinction has not been made as the gravel can potentially be stored throughout the cross-section.

Full width analysis:

1998-2000-2002:

Within the full floodplain width and over the entire reach of the Upper Whakatane River, past NERMN reports have noted an overall volume gain of 55,000m³ between the 1998 and 2000 survey, and a gain of 92,000m³ for the period September 2000 to July 2002. The largest volume gains from 2000 to 2002 were at cross-sections 26, 27 (Pekatahi Bridge) and 55.

2002-2003:

The 2003 survey showed that since the 2002 survey there had been a major volume loss of 260,000m³ over the full floodplain width of the river. The majority of these losses occurred in the braided reach above cross-section 44, where a total of 217,000 m³ were lost. Volume losses were especially large in the reach between cross-sections 53 and 58. A profile of minimum bed levels shows that the river bed has dropped significantly at cross-sections 47 and 48 just below Ohutu Bridge, at cross-section 54, and at cross-section 56, whereas it has significantly risen only at cross-section 53. The volume losses in the upper parts of this reach may be a result of the 1998 floods, during which large amounts of material were transported from the catchment and deposited in the upper parts of the floodplain. This material now becomes available to be transported further downstream.

2003-2004:

After the massive losses between the 2002 and 2003 surveys, the following survey in August 2004 showed a total **volume gain of 378,000m**³ for the entire reach and the full width (channel and floodplain). Most of these gains occurred in the braided reach from cross-section 45 to 57, with a gain of 87,000m³ at cross-section 50 alone. Further gains occurred at cross-sections 29 to 33. The major gains can be attributed to sediment deposits during the July 2004 floods. Volume losses occurred again just upstream of Pekatahi Bridge (cross-sections 27 and 28). Note that the volume analysis on the floodplain is based on the 2004 survey (post 2004 flood) and the survey from 1998 (post 1998 flood). The surveys in between those dates were limited to the main channel only since no major changes are expected during times without major flooding. Along section of the minimum bed levels (thalweg line) shows that bed levels have risen in the reach between cross-sections 28 to 30, and at cross-sections 44, 48, 50, 54, and 56 between 2003 and 2004. The bed level has dropped at cross-sections 27, 31, 34, 35, 38, 42, 45 to 47, 51, to 53, 55, and 57.

2004-2006:

The most recent survey from January 2006 shows a **small loss of 16,500m**³ for the entire reach and full width. Gains occurred upstream of Pekatahi Bridge at cross-sections 26 to 28, in the reach between cross-sections 38 to 42and at cross-sections 48, 49 and 51. These gains were outweighed, however, by losses in the reach from cross-section 29 to 33, at cross-sections 43, 45 and 46, and in the upper reach from cross-sections 52 to 57. As for the active channel, the development in this last period up to the most recent survey in 2006 shows the opposite trend to the development in the period before (2003 to 2004). Minimum bed levels have generally risen since 2004 . Exceptions are at cross-sections 29, 33, 44, 54 and 56 where they have fallen.

Active Channel analysis:

1998-2000-2002-2003:

The 2003 survey showed that within the active channel in the reach from crosssection 25a to 44, there has been a volume gain of 19,000m³ since 2002, compared to gains of 78,000 m³ from 2000 to 2002, 40,267m³ from 1998 to 2000, and 18,551m³ from April to December 1998. In between 1998 and 2000, major gains were made at cross sections 30 and 33b, with around 22,000m³ and 12,000m³ deposited respectively. The survey in 2003 showed little volume changes compared to previous years. This is likely to be because of the short period since the previous survey which only had few floods of significant size. Also a stabilisation of gravel movement after the 1998 floods may have started to set in. Minimum bed levels at and near Pekatahi Bridge (cross-sections 26 and 27) have dropped, and so have minimum bed levels in the reach from cross-section 34 to 40.

2003-2004:

The analysis carried out on the August 2004 survey, which was taken immediately after the July 2004 floods, showed a **volume loss of 56,400m**³ since June 2003 in the active channel. Significant losses occurred around the Pekatahi Bridge (cross-sections 27 and 28) and in the upper reach from cross-section 37 to 42, while volume gains occurred in the reach from cross-section 29 to 33. It can be assumed that most of this gravel movement occurred during the floods in July 2004.

2004-2006:

For the active channel, the survey from January 2006 showed an overall **volume** gain of 125,600m³ in the period August 2004 to January 2006 in the reach from cross-sections 25a to 44. The bulk of this gain occurred at cross-sections 26 to 28 (around Pekatahi Bridge) and 38 to 42. Losses occurred in the reach from cross-section 29 to 33 and 43 to 44. This is the opposite of the gravel movement observed in the previous period which covered the July 2004 floods, and it indicates a settling process after these floods.

Extraction and bed levels:

Significant gravel extraction is carried out in the reach above Pekatahi, however, the amount taken is generally decreasing from year to year. Extraction volumes from recent years are listed in Table 3.5.

Period	Extraction volume (m ³)
2005/06	5,530
2004/05	4,600
2003/04	0
2002/03	22,000
2001/02	16,900
2000/01	24,600
1999/00	20,400
1998/99	39,700
1997/98	59,400

Table 3.5 Extraction Volumes Upper Whakatane River (above Pekatahi Bridge)

Average extraction on the whole Whakatane River since 1996 is around 30,000m³ per year, most of which has been extracted from above the Pekatahi Bridge. A

portion of the extraction has been from outside the "design channel", to allow bed levels to aggrade in some places. Staff undertake regular visual inspections to monitor gravel extraction and in some areas extractions have been suspended.

The long-term extraction rate for this part of the river has decreased from an estimated $72,000m^3$ per year over the last 20 years to around $30,000m^3$ over the past ten years (1996-2006). This figure is now lower than the estimated supply rate of around $40,000m^3$ and is hoped to aid the recovery of degrading bed levels.

From 1998 to 2000, at cross-sections 47 and 48 the left side of the bank has eroded heavily, while the right bank has been built up somewhat. Sections 49 and 50 had heavy erosion on their right banks with build up on the left. This suggested the beginning of a change in the rivers meander pattern. In the period 2000 to 2002, again major gains were observed at cross-section 30 with over 12,000m³, and at cross-sections 28 and 37 with over 9,000m³ each. A long-section plot of the minimum bed levels confirmed that the river is recovering with significant aggradation in this reach.

For the integrity of the existing bank protection works, an ideal minimum bed level was estimated in 1996 to be between the 1996 minimum bed level at each crosssection and 0.5m higher, i.e. some recovery was desired along most of the river. In places, the ideal bed level may be higher still, so as the recovery target is approached, a careful review of desirable levels will be required (based on balancing the risks of erosion, aggradation and flooding). It has been proposed that until adequate recovery is achieved, extraction should be suspended within the active channel over the reach from approximately 1km upstream of the confluence of the Waimana River to Ruatoki Bridge and also in the lower reaches of the Waimana River.

A comparison of the 2002 survey to the 1996 survey shows that the minimum bed levels have risen by up to one metre over most of the river reach, except at cross-section 49, 54, and 55, where it has dropped by about half a metre. A significant rise of almost four metres occurred at cross-section 47, where the main channel has been filled in over time. Whilst thalweg levels are improving, a significant volume of gravel is required to effect the recovery of bed levels yet.

A further comparison of the 2003 survey to the 1996 survey shows that the 2003 bed level is still below the ideal bed level in several places, including cross-sections 25a to 27, 29, 32, 35 to 39, 43, 49, and 54 to 57.

A comparison of the minimum bed levels of the most recent survey (2006) to the bed levels from 1996, shows that the river is generally recovering (aggrading) and the desired bed levels have been reached for most of the reach. The only exceptions are at cross-sections 35, 38 to 39, 43, and 55 to 56, where the current levels are below the 1996 levels. Possibly a combination of two major floods within this period transporting gravel from the catchments into the river system and a carefully directed gravel management within the system has achieved this desired partial recovery of bed levels in this reach.

Recommendation:

A limit for the active river of around 20-30,000m³ per year from the existing beaches should continue to aid recovery over the next few years - any extra demand should be met by widening the floodway where appropriate (e.g., ahead of traditional beaches extraction should target where the river floodway is deemed too narrow). There are significant resources available in some areas. Following the large input of gravel in 1998 and 2004, it is likely that some beaches and floodway constrictions

will develop where extraction is desirable, especially above Ruatoki. However, it is also desirable that some throughput to the rest of the river is allowed.

The proposal that until adequate recovery is achieved, extraction should be suspended within the active channel over the reach from approximately 1km upstream of the confluence of the Waimana River to Ruatoki Bridge and also in the lower reaches of the Waimana River, is still valid at this point in time.

There is a diversity of viewpoints on how the gravel in the vicinity of the Holmes bend should be managed. On the one hand there is strong pressure for the extraction in this reach to be ceased until bed levels recover and bank erosion problems are reduced, both through the reach and downstream. Management was adjusted during the 1990's to encourage recovery of bed levels. This viewpoint was again strongly enunciated following significant erosion during the July 1998 floods at the Holmes bend. Factors causing this erosion were several, including undermining caused by lower than optimum bed levels, the extreme nature of the succession of events (cumulatively at least a one in one hundred years event) and severe sharpness of the bend. This recovery has already occurred in the first one kilometre above the confluence with the Waimana River. The recent surveys show levels upstream of this to also be showing some recovery. On the other hand there is a view that the river should remain entrenched to avoid the severe adverse effects forecast from overflows onto the surrounding farmland. This occurred several times in the 1960s, with large scale deposition of silt and debris. Had the river not been entrenched in July 1998 similar adverse effects were likely. It is difficult to exactly balance these opposite objectives. Current river management practices also focus on emulating the natural processes of a river as far as practicable, as these have been shown to often produce the least adverse effects in terms of erosion (although not always, particularly where adverse river misalignments occur due to geological or other factors). In the meantime the policy of allowing some bed recovery should continue, with careful monitoring. Possibly a hydraulic model of the reach which has been produced for the Whakatane/Waimana Floodplain Management Strategy could be used to define optimum bed levels.

3.6 Whakatane River below Pekatahi

The Whakatane River below Pekatahi has been resurveyed in June 2004, just before the big flood in July 2004. To date no survey has been undertaken after these floods.

As in previous reports, the reach between cross-sections 15 to 25, which is assumed to be gravel, has been analysed for both the full width (including the wider floodplain) and the design width.

Full width analysis:

2003-2004:

Over the full width of the cross-sections and the entire reach from Pakatahi to the mouth there has been a total **volume loss of 670,000m**³ between 2003 and 2004 (before the July 04 flood). These losses occurred in the lower reach of the river downstream of cross-section 17, with the bulk of the volume lost below cross-section 7a. Some volume gains occurred at cross-sections 14 to 17 and at cross-section 25. The channel has deepened significantly at cross-sections 2, 3, 3b, 5 to 7, 15, and 24. Bank erosion has taken place on the left bank at cross-sections 1 and 2a.

1998-2003:

The survey in June 2003 shows that over the full width of cross-sections and the entire reach from Pekatahi to the mouth, there has been a substantial volume gain of 303,500m³ of material since 1998. Major losses were observed near the river mouth between cross-sections 1 and 1a, due to dredging. Further losses occurred at cross-sections 8a, 12, 17a, and 24a and 25. Note that extraction sites are located near cross-sections 17 and 24a. In all other parts of the reach volume gains were observed. Especially in the lower reaches (cross-sections 1a to 7a) this partly compensated for major volume losses between the 1996 and 1998 survey.

The thalweg line of the Lower Whakatane River shows that the river is generally aggrading in the sandy reach from cross-section 13 downstream, except at cross-sections 1, 2b, 2a, and 12 where the invert levels have dropped by up to 1.8 metres at cross-section 2b.

Design width analysis:

2003-2004:

The 2004 survey shows an overall **volume gain of only 1,300m**³ since 2003 within the design channel in the reach between cross-sections 15 to 20. Depositions occurred downstream of Pekatahi Bridge between cross-sections 23a and 25, and at cross-section 18. Losses occurred at cross-sections 16 and 17, and 19 to 23. Note that the survey in 2004 was taken before the big flood in July, so to date any volume change from the flood is not captured yet.

1998-2003 (and earlier):

A comparison of volume changes within the design channel in the reach between cross-section 15 to 25, which is assumed to be gravel, reveals a net deposition of 30,000m³ from 1998 to 2003. The largest increases have been at cross-sections 20 and 21. The volume analysis indicates that a general loss from 1977 to 1985 has been regained by 1998 and now further material has accumulated since 1998.

Extraction and sediment movement:

The amount of gravel extracted in recent years was $2,850m^3$ in 2002/03, $3,317m^3$ in 2003/04, $3,054m^3$ in 2004/05, and $10,524m^3$ in 2005/06.

Substantial deposition of material must have occurred at or just beyond the Whakatane River mouth as a result of the floods in July 1998. A rough measure of the quantity deposited can be made by adding the estimated suspended sediment transported past the Valley Rd recorder station (3.3 million tonnes, equivalent to about 1.6 million cubic metres in situ), to the loss of material below this point (320,000m³) for the period before to after the 1998 floods. This gives a total of around 2 million cubic metres. This material is now providing good replenishment to the beach at Ohope, particularly at West End.

It can be assumed that similarly high sediment loads have been transported to sea and deposited beyond the river mouth during the flood in July 2004.

3.7 Ruarepuae Stream

The Ruarepuae Stream has been resurveyed in June 2004 (prior to the floods in July 2004) and in December 2005.

Previous surveys have been carried out in March 1993, March 1995, January 1997, April 1998, and June 2000. No gravel has been extracted in recent years.

1995-1997-1998:

Around 14,000m³ was extracted between March 1995 and January 1997, during which the volume changes have been calculated to be a loss of 7,000m³. Between January 1997 and April 1998, there was no reported extraction, and only a negligible net change volume was observed. Some gravel was lost at cross-section 6, but there were compensating gains at other cross-sections.

1998-2000:

Between April 1998 and June 2000, the stream had a net volume gain of 762m³ of material. The main area of aggradation was at cross-section 4 where the bed level has risen with a gain of around 1,000m³. However this was countered by a loss of 900m³ at cross-section 2 where erosion of the left bank and a small drop in the bed level occurred.

2000-2004:

The survey from June 2004 shows an overall **volume gain of 25,760m³**. The main portion of this was gained at cross-sections 4 and 6, while some losses occurred at cross-section 2 due to eroding banks on the right bank at cross-section 1 and on the left bank at cross-section 2. The river bed is aggrading over the entire reach by up to 2.3m at cross-section 3 (thalweg line).

2004-2005:

The survey from December 2005 shows an overall **volume loss of only 760m**³, most of which was lost at the upper end of the reach (cross-section 6), while some gains occurred at cross-sections 2 and 3. The river bed is further aggrading in the lower reach (cross-sections 1 to 3) and degrading in the upper reach (cross-sections 4 to 6).

1993-2005 (long-term):

The long term development from 1993 to 2005 shows a small volume gain of almost 1,900m³ over this period.

Gravel extractions and recommendations:

The Ruarepuae Stream has had high rates of extraction in the past (up to 21,000m³ per year), but extraction has reduced in later years, and there has been no extraction over the past nine years. A desirable bed level was set in 1986 (refer plan R553), and surveys in recent years have shown that bed levels are near those desired. Extraction should now be limited to where gravel builds up excessively.

Estimates put average gravel supply at around 5,000m³ per year, although because the catchment is very steep, the supply is likely to be irregular.

3.8 Rangitaiki River

Lower Rangitaiki River (mouth to Te Teko):

The Lower Rangitaiki River between the river mouth and Te Teko has been resurveyed in August 2004 following the large flood in July of that year.

Earlier surveys on the Rangitaiki River below Te Teko have been done in June 1987, October 1993, December 1995, January 1999, and between April 2002 and June 2003. Part of the 1987 data is incompatible with the more recent surveying – comparisons have been made where possible. The benchmarks at these cross-sections have been re-levelled since the 1999 survey, and most of them had settled over time. This will account for some volume losses in the volume calculations.

1999-2003:

The total volume loss from 1999 to 2003 was 67,000m³ over the reach from the river mouth to Te Teko. It can be expected that only part of this is due to gravel movement, whereas part of it is caused by the settlement of benchmarks. At cross-sections 5 to 8 and 15 the left stop banks have been raised between the two survey dates. When setting the offset limits to exclude the stopbanks at the cross-sections where stopbanks have been raised, the resulting volume figures only insignificantly differ. Figures provided in the Appendix therefore represent calculations including these stopbanks. Minimum bed levels since the last survey have risen in some places in the reach, especially in the lower parts from cross-section 1 to 10. Considering the settlement of most benchmarks aggradation can be expected to be greater than shown by the survey data.

2003-2004:

The survey from 2004 shows a total **volume loss of 158,000m**³ over the reach from the mouth to Te Teko. This can be seen as the result of the July 04 flood, which has been assessed as a one hundred year flood. Some volumes were gained at cross-sections 8 to 10, 13 to 15, 28b to 30, 33 to 34, and 43c. But these gains were by far outweighed by losses at cross-sections 1 to 7, 11 to 12, 16 to 28b, 31 to 32, 35 to 43b, 44 to 48, and 50 to 59. The larges losses occurred at cross-section 51b (24,000m³) where a new channel has formed on the left berm, and at cross-section 51c (25,000m³) where the left bank is eroding. Erosion is also occurring on the left bank at cross-sections 18, 27, 35, 41a, 44, and 51a, and on the right bank at cross-section 5 to 15 and on the left bank from cross-section 10 to 14. At cross-section 9 a floodwall was constructed. These top-up volumes are partially included in the volume analysis as the offsets for the volume calculations are now set to reach from stopbank to stopbank.

Minimum bed levels show that during the period 2003 to 2004 the bed is degrading in the reaches from cross-section 1 to 3, 33 to 37, 43b to 47a, and 49 to 52.

The factors that have influenced the changing rate of loss or gain may include:

- Floods, particularly in July 1998 and July 2004, may have transported more sediment from upstream.
- Conversely, the Rangitaiki River has not experienced a significant flood between January 1999 and June 2003. Thus there has been no ability to flush sediment from the lower reaches during this period.

- Matahina Power Station may limit sediment transport, especially of larger grain sizes. While the repair works were underway, more sediment than normal may have passed the station.
- Changes to the river gradient following the earthquake in 1987 may have slowed as the river readjusts to a new gradient. Losses have been similar both above and below the fault scarp.

No extraction is carried out in the lower reaches below Matahina.

In the lower reaches morphological processes consequent from the effects of the Edgecumbe earthquake are likely to cause some further degradation. This could be artificially encouraged to give adequate flood capacity.

Upper Rangitaiki River (above Aniwhenau):

The Upper Rangitaiki River cross-sections above Aniwhenua have not been resurveyed since the last NERMN report, and the cross-sections at Waiohau have not been resurveyed since 1996.

Above Aniwhenua surveys were done in December 1992, March 1996 and November 2001 (refer to previous NERMN report).

1996-2001:

Between 1996 and 2001 a total volume of $95,000m^3$ was gained. Main volume gains were observed at cross-sections 3 to 5, and 11. Minimum bed levels have slightly dropped at cross-sections 1, 7, 12, and 14 to 18, while they have risen at cross-sections 2 to 4, and 24.

There was no shingle extracted in recent years. nor was any reported in the upper reaches of the river in this period.

Previous extractions above Lake Aniwhenua have been minor (e.g. 3,000m³ was extracted in 1994/95).

Rangitiaki River – Waiohau area:

There was no new survey done in the in the Waiohau area. The last surveys were undertaken in February 1993 and March 1996. The changes in bed level then were relatively minor, with an overall loss of 6,000m³ over the 11km surveyed. The largest changes were at and just upstream of the Galatea Road Bridge.

Overall Recommendations:

Gravel or sand extraction is not required, nor should it be encouraged anywhere along the surveyed part of the river at this stage (the heads of the hydro lakes are not surveyed). There is little demand for extraction of gravel/sand from the river at present. The consents for extraction in the Waiohau section have expired.

3.9 Whirinaki River

A new survey has been completed on the Whirinaki River in September 2005.

Previous surveys were done in November 1994, November 1997, July 1999, and August 2003. There was no gravel extracted on this river since 1997.

1994-1997:

In the river channel between 1994 and 1997, the main changes in volume were a $61,500m^3$ loss above cross-section 7 and a $43,100m^3$ gain near cross-sections 4 and 5. (The calculation has included more of cross-section 4, so is slightly different to the previous report). The net loss for the river was $7,100m^3$.

1997-1999:

Between 1997 and 1999, the loss above section 7 was replaced (26,200m³) while further gains (especially at section 4), amounted to 38,400m³. The net gain for the river was 60,000m³.

1999-2003:

The survey in August 2003 shows a total volume gain of 9,000m³ since the previous survey in July 1999. Volume losses occurred between cross-sections 3 and 5, and between cross-sections 7 and 8, while gains were observed in the other parts of the monitored reach. The thalweg line shows that the river bed is generally aggrading, except at cross-section 4 where the bed level is dropping and at cross-section 7 and 8 where it has been fairly stable since 1994.

2003-2005:

The most recent survey (September 2005) shows a substantial **volume gain of 83,500m**³ since the previous survey in 2003 (full width). Volume gains occurred throughout the reach fairly evenly. The thalweg line shows some continuous aggradation at cross-sections 5 and 6 since 1999 and in the lower reach at cross-sections 1 and 3.

1994-2005 (long-term):

The total gain since 1994 adds up to 160,000m³, which largely stems from the 1998 and 2004 floods.

In the Fluvial Processes Report for the Whakatane and Whirinaki Rivers (Balley, 2006) river characteristics and sediment processes have been studied on the Whirinaki River. Design channel widths of 50m plus a buffer zone of 30m have been developed for the narrow managed fairway option on the lower Whirinaki River. Bed load transport equations were developed to estimate an average annual bedload transport of 23,000m³/year. This compares well to the initial estimate of 24,000m³ per year supply.

Detailed design is required to define desirable bed levels at each cross-section.

It is recommended that extraction be encouraged at the aggrading reaches around cross-sections 4 and 5.

3.10 Horomanga River

The Horomanga River has been resurveyed twice since the last NERMN report, once in July 2004 just before the big flood and once after the flood in September 2004. In December 2001, some new cross-sections were established and surveyed to improve the precision of the volume calculations. These are now utilised for the volume analysis. Surveys have been done intermittently since 1956 on this river.

1996-1999-2001:

The 2001 survey data showed a loss of 61,000m³ over the whole reach of the river since the 1999 survey. Sections 9 to 12 lost over 74,000m³ in total, where almost 56,000m³ are lost between cross-sections 9a and 11. This adds up to a loss of 78,000m³ between 1996 and 2001, giving an average loss of 13,000m³ per year for these six years.

2001-July 2004:

The data from the survey prior to the July 2004 flood shows an overall **loss of** $41,000m^3$ over the whole reach, with the biggest losses at cross-section 1 and at cross-section 8a to 9a.

July 2004-Sept 2004:

The survey after the July 2004 flood showed that the flood had deposited more gravel than it had taken away, with a total **gain of 67,300m³** over the whole reach. The largest gains were recorded at cross-section 1 with 24,000m³ alone, and at cross-section 3 and 3a. Some losses occurred at cross-sections 8a to 11.

Between 1996 to September 2004, the total volume changes add up to a loss of 51,600m³, giving an average loss of 6,500m³ per year for the past eight years.

Gravel Extraction and Recommendations:

The river has traditionally had a high extraction rate, hence a good picture can be built up of the effect of extraction. Considerable extraction was carried out in the Horomanga River until 1996, averaging 55,000m³ annually since 1979. Extractions have dropped considerably to 19,000m³ in 1996/97, 9,000m³ in 1997/98, 500m³ in 1998/99, 3,600m³ in 1999/2000, none in 2000/2001, and 8,204m³ in 2001/2002, but have increased again in 2002/2003 when 25,964 m³ were extracted. In 2003/2004 only 525m³ were extracted, in 2004/2005 15,404m³, and in 2005/06 12,132m³.

Previous reports indicated that the supply of gravel appeared to have been smaller between 1991 and 1996 than prior to 1991 (15,000m³ per year as opposed to 45,000m³ per year).

The data suggests that **gravel extraction should be suspended in the upper part of the reach (above cross-section 8).** In the lower reaches the bed is severely perched and significant extraction is required to avoid undue flooding or avulsion (migration of the river channel). The bed level needs to initially be lowered by an average of 0.50 metres over the 70 metre design fairway width.

Work to create a stable river pattern has continued with plantings and gravel extraction directed to areas which have a higher than desirable bed level. The desirable level to which extraction can take place should now be reviewed in light of the apparent reduction in supply. In the past there was surplus gravel, but we may now have reached the stage where extraction must meet supply since there is no longer an overall surplus of gravel.

Supply of gravel is dependent on many processes within the catchment. The Horomanga is a particularly long, narrow catchment in steep country, which will tend to produce an irregular supply on the floodplain, depending on slip activity, where material is stored within the catchment, and when floods occur.

Desirable bed levels that limit both erosion and flooding should be set to maintain a stable river profile. Extraction should then be limited to the input as measured by subsequent surveys. In recent years, the net change in volume appears to have varied from a loss of about 32,400m³ (1997-1998) to a gain of 7,000m³ per year (1998-1999), however, over the longer term net change in volume has averaged a gain of 45,000m³ (1977-1996, refer 1995/1996 report by Surman).

3.11 Mangamate Stream.

The Mangamate Stream has been resurveyed twice since the last report, in June 2004 and October 2005/January 2006. Note that the 2004 survey was completed before the July 2004 floods. Previous surveys have been carried out in May 1993 (baseline survey), February 1995, August 1995, January 1997, June 1999 and June 2004.

1999-2004-2005:

The recent surveys show an overall **gain of 1,900m**³ between 1999 and 2004 and an overall **loss of 24,700m**³ between 2004 (before the floods) and 2005. Between 1999 and 2004 some losses occurred at cross-sections 4, 5, and 6, partly due to the removal of a shingle bank on both sides of the stream. Between 2004 and 2005 the most significant portion of the loss was at cross-section 8 and 9 with 5,500m³ and almost 23,200m³, respectively.

Since the base line survey in 1993, almost 108,000m³ of volume have been lost over the entire reach, particularly at cross-section 9, and except below cross-section 2, where 900m³ have accumulated over those 12 years.

1997-1999:

Between January 1997 and June 1999, there was only a small net loss of $2,000m^3$ between cross-sections 1 and 8. Cross-section 9 has experienced a much larger change, with a loss of $128m^2$ of cross-sectional area – the right bank has eroded by about 5m while the bed has dropped by about 1m. If this is representative, the net loss in this vicinity is estimated at $26,000m^3$.

Overall, since 1993 up to 1999, all cross-sections have lost material and the stream appears to have lost about 85,000m³.

1993-1995-1997:

About 15,000m³ of gravel was extracted between August 1995 and January 1997, but there was a net gain of 2,000m³ in this time. Previously, there had been a loss of about 58,000m³ since May 1993, despite extraction of only 16,000m³. A substantial proportion of this calculated loss is from one eroding bank at cross section 9; the bank is 13m high and has moved back about 15m in six years. The material from this bank has not reappeared at any particular cross-section – most other sections appear relatively unchanged over this time, with slightly lower bed levels than in 1993. A proportion of this loss may be silt and sand sized fractions that are less likely to remain on the riverbed once mobilised.

Gravel Extraction and Recommendations:

After an extraction of 6,003m³ during 2001/2002 and no extraction during 2002/03, 2,616m³ have been extracted in 2003/04, 4,103m³ in 2004/2005, and 6000m³ in 2005/06. No extraction has taken place between 1998 and 2000.

Desirable bed levels have not been defined for this stream. Initial estimates put average gravel supply at around 4,000 - 7,000m³ per year, although the stream appears to be steep enough to transport significant quantities of gravel right through the system. Extraction should not be encouraged on this stream unless bed levels rise or a detailed design is undertaken.

3.12 **Ohutu Stream**

The Ohutu Stream has been resurveyed in June 2004. Note that this survey took place before the floods in July 2004.

1999-2004:

The volume analysis shows a net **loss of 13,850m³** between June 1999 and June 2004, most of which occurred at cross-sections 5 and 6. Bed levels have remained fairly stable over this period.

1997-1999:

The previous survey for this stream was carried out in June 1999. The net change between the January 1997 and June 1999 surveys is a loss of about 4,000m³. Bed levels have dropped slightly at cross-sections 1 to 5. Section 6 rose moderately. And only a small amount of extraction (2,400m³) has taken place in 1996-99.

Gravel extraction and Recommendations:

In 2003/2004 a gravel volume of $3,525m^3$ was extracted, and in 2005/06 a volume of $1,055m^3$.

Desirable bed levels have not been defined for this stream. Initial estimates put average gravel supply at around 5,000 - 8,000m³ per year, although the stream appears to be steep enough to transport significant quantities of gravel right through the system to the Horomanga River.

However, taking into account the continuous overall losses on this stream over the past years, there does not seem to be any surplus gravel for extraction.

3.13 Kopuriki Stream

The Kopuriki Stream has been resurveyed in October 2005. Previous surveys took place in August 2003, March 1998, and August 1996. The baseline survey was carried out in 1996 following applications to extract gravel from this stream.

2003-2005:

The recent analysis shows a further **gain of 28,500m³** between the 2003 and 2005 survey. This accumulated to a total gain of almost 53,000m³ since 1996, with the main gains concentrated in the lower reach of the stream (cross-section 1 to 5).

Comparison of the 2005 thalweg line to the design thalweg established for the reach from cross-section 5 to 9 (Surman, 1998) indicates that the current minimum bed level meet the desired level at cross-section 5, then exceed the desired level at cross-sections 6 to 8 by up to 1.36m (at cross-section6), and are slightly below desired level at cross-section 9.

1998-2003:

The previous survey of the Kopuriki Stream has been undertaken in August 2003.

The volume calculations show an increase of 14,000m³ since the previous survey in March 1998, which is mainly accumulated at the lower four cross-sections of the stream. The thalweg line indicates that the river in this reach (cross-section 1 to 4) is slightly aggrading, while further upstream it is fairly stable. Comparison of the 2003 thalweg line to the design thalweg established for the reach from cross-section 5 to 9 (Surman, 1998) indicates that the current minimum bed levels are very close to the desired, except at cross-section 6 where the current bed level is almost 1.3 metres above the desired bed level.

1996-1998:

The stream was resurveyed in March 1998, with calculations showing an increase of 10,000m³. No extraction has been reported in this time, although resource consent applications have been made to extract from this stream.

Gravel extraction and recommendations:

Only 522m³ and 450m³ of gravel were extracted in recent years (2003/04 and 2005/06, respectively).

No estimates of long term supply have been made, however minor resources exist within the stream floodway. A desirable bed level and meander pattern has been established (Surman, 1998).

Any extraction should be focused on the lower reach of the stream (i.e. crosssections 1 to 4) where bed levels are aggrading and volume has been accumulating over the years.

3.14 Waikokopu Stream

Waikokopu Stream (Waiohau) has not been resurveyed since the baseline survey of 1996.

Extraction commenced on this stream in mid-1997, following a baseline survey and establishment of desirable meander pattern and bed levels in December 1996. A volume of 1700m³ of gravel was removed in 1997/98, around 1000m³ in both 1998/1999 and 1999/2000, 334m³ in 2000/2001, 430m³ in 2001/2002, and none since.

3.15 Waihua Stream

Waihua Stream (Waiohau) has not been surveyed since the 1997/1998 NERMN report.

A baseline survey and establishment of desirable meander pattern and bed levels was carried out in December 1996. No extraction has taken place.

3.16 Waihui Stream

Waihui Stream (Ruatahuna, tributary of Whakatane River) has not been surveyed since the 1996/1997 NERMN report.

A baseline survey and establishment of desirable meander pattern and bed levels was done in December 1996. Approximately 14,000m³ of gravel has been extracted in 1998/1999, just about 3,800m³ in 1999/2000, 6,449m³ in 2000/2001, only 628m³ in 2001/2002, 1,798 m³ in 2002/2003 and none in 2005/06.

3.17 Kaituna/Mangorewa Rivers

The Kaituna River has been resurveyed in April/May 2005. The previous surveys on the lower Kaituna River (below Te Matai) were done in February 1992, June 1997 and October 2001. Previous surveys on the Upper Kaituna River (above Te Matai) are from June 1989 (baseline survey), May/June 1997, and October 2001.

During the period 1997 to 2001 the Kaituna River sustained a major flood event (1 May 1999). This event would have transported significant quantities of sediment.

Lower Kaituna (below Te Matai):

2001-2005:

The latest survey from April 2005 shows an overall **volume gain of 94,700m**³ since the 2001 survey. This continues the trend of volume gains in this reach of the river. The largest gains were at cross-sections 11 to 15. Some losses occurred at cross-sections 2 to 5 and at 7 and 9. Minimum bed levels have generally risen, by as much as approximately 2m and 2.5m at cross-sections 11 and 12, respectively.

1997-2001:

The 2001 survey below Te Matai shows an over all net volume gain of 163,000m³, following a net gain of 39,000m³ between February 1995 and June 1997. The thalweg profile shows that minimum bed levels have significantly risen around cross-section 13 to 16, where the bed levels used to be particularly deep. The volume gain at these sections was over 106,000m³. Minimum bed levels have dropped near the river mouth from cross-section 1a to 4. At cross-section 12 the channel has shifted towards the left by about 15 metres.

No extraction has been carried out in this river in recent years (since the major works of the Lower Kaituna River Scheme). Some extraction (of silt and/or sand) may be beneficial in some areas of the Kaituna River below Te Matai, if build-ups are excessive. However, the supply of sediment to the coast may be reduced by extraction. To date, build-ups do not appear to have adversely affected predicted flood levels significantly (the predicted flood levels were reviewed in September 1998 based on the 1997 cross-sections), but there have been reports of more difficulty in navigation. Build-ups may also be forcing the river to the outside of bends, which may increase erosion at these sites.

Upper Kaituna (above Te Matai):

2001-2005:

The latest survey on the Kaituna River above Te Matai from May 2005 shows a total **loss of 40,000m³**. The major losses have been in the reach between cross-sections 43 to 49. Erosion is occurring on the right bank at cross-section 44.

1997-2001 (and earlier):

Above Te Matai, the 2001 survey showed a total loss of 13,000m³. Compared to the net losses of 57,000m³ between October 1993 and June 1997 and 56,000m³ between 1990 and October 1993 this shows that volume losses have slowed down considerably in the recent years. The major losses have been at cross-sections 40, 41, and 44.

Mangorewa River:

The Mangorewa River has not been resurveyed since the previous report. It has last been surveyed in October 2001.

Since the previous survey in June 1997 the reach of 2.4 km has gained a volume of 25,000m³. Since 1990 the volume gain was 16,000m³. The minimum bed level at cross-section 1 has dropped about 0.5 metres since the last survey, while it has risen at cross-section 3 by about 0.4 metres, and the channel has slightly shifted towards the left here. Cross-section 2 shows a significant build up of silt from floods on the left berm.

3.18 **Tarawera River**

The Tarawera River has been resurveyed in February 2006. Previous surveys were the baseline survey in 1993, followed by resurveys in March 1998 and October 2000. Some cross-sections near the mouth have been resurveyed between these dates also.

Between the survey in 1998 and 2000 the benchmarks had been resurveyed as well, and most of them had settled slightly over time. As this has some effect on the volume calculations, the volume loss between 1998 and 2000 might really be less than shown in the figures.

2000-2006:

The 2006 survey shows another **volume loss of 86,600m**³ since the 2000 survey. This continues the trend which has been observed since the baseline survey. Note that the losses at cross-sections 16 and 17, which contribute significantly to the overall losses, are exaggerated due to the settlement of new benchmarks and a possible error at cross-section 16. These two cross-sections haven't been surveyed since the renewal of the benchmarks, so this issue arises here only now, while at the rest of the cross-sections this problem occurred already in the last analysis. The only cross-sections at which minor gains occurred were cross-sections 6, 10 and 11. Bed levels have dropped since the last survey over the entire reach, except at cross-sections 1b, 2, 7, and 10.

1998-2000 (and earlier):

The 2000 survey showed a volume loss of 87,000m³ since 1998. With the volume loss of 83,000m³ between 1993 and 1998, this adds up to a total loss of 170,000m³

since 1993. The trend of dropping minimum bed levels which was observed from the 1998 survey is continuing at most of the cross-sections, particularly at cross-sections 5 to 8 where bed levels have dropped by up to 1 metre since 1993.

The riverbed is particularly mobile because of its low-density particles. The river is relatively straight, so flows fairly quickly down the floodplain. The bed level drop indicates the supply of sediment has been less than the transporting capacity of the river.

No extraction is carried out in this river at present, and with the lowering of the whole bed, it is recommended no sand extraction be allowed in the short to medium term. This analysis clearly shows there are factors other than extraction that may cause degradation.

3.19 **Other Locations**

Some minor extraction is carried out occasionally in some other streams and rivers, e.g. Hikurangi, Haparapara, and Hawai Rivers. Consents have expired for most of these and have not been reapplied for.

A total of 5,402m³ were removed from the Waiotahi River in 2005/06, 5,526 m³ in 2002/2003, 4,000m³ in 2000/2001, and 5,300m³ in 1997/98 (with consent). There was no gravel removed in 2004/05, 2003/04, 2002/2001, 1999/2000, and 1998/99. If extractions continue at this rate, regular surveys will be required. Four parties either have consent or have applied for consent to extract from this river, although the quantities involved are fairly small.

A total volume of 51,000m³ was extracted from the Motu River, 983m³ from the Raukokore Stream, 300m³ from the Wairata Stream, and 120m³ from the Waiaua Stream during the period 2005/06. Interest has also been shown in extracting from the Kereu, Petipeti, Whitikau, and Whangaparaoa Rivers. Cross-section surveys may need to be set up to assess and monitor the resources if the extent of extraction and the quantities involved are significant.

In other streams, the levels of extraction are minor, 100 to 500m³, and do not warrant detailed monitoring.

Chapter 4: Conclusion

The continuing accumulation of data will allow Environment Bay of Plenty to set and refine appropriate rates and volumes for each section of river.

Definition of desirable bed levels at each cross-section would aid gravel management and development of stable river channels. A balance of risks of erosion, aggradation and deposition is required.

For most rivers, allocations will be advised to each contractor as part of the resource consent process. The Operations and Rural Services department of Environment Bay of Plenty has secured resource consents for extraction on the Waioeka, Otara and Waimana rivers to better manage the allocation of resources and to ensure sufficient gravel is removed for flood control purposes.

Allocation on other rivers, in terms of sites and volumes, tends to be in response to a request for the gravel. With there being, in most instances, an abundance of gravel, this is satisfactory. However, as demand begins to exceed supply, as is happening in some locations, allocations in terms of sites and volumes need to be rigorously controlled in terms of maximum annual extraction rates, minimum bed levels and defined extraction locations.

This can only be done when sufficient data exists and a full understanding of the resource is gained. Initial estimates of gravel supply have been included where possible to aid the consent process. These will need to be refined as data and understanding increase.

In many cases, extraction records are in terms of reaches of river (e.g. between Pekatahi and Ruatoki Bridges on the Whakatane River), and may need to be further defined to match with cross-section information to allow for detailed analysis within a reach. Having said this, Environment Bay of Plenty is interested in long-term trends and the health of each river as a whole. An ongoing assessment of the information required will continue.

The 1998 floods caused massive deposition on the floodplains of the affected rivers. Some of this deposition has been counteracted by settlement of the sediment. Further deposition has also occurred during the October 2003 floods on the Waioeka and Otara Rivers and during the July 2004 floods (mainly Waimana/Whakatane and Rangitiaki Rivers). The Waioeka-Otara scheme is still experiencing considerable deposition on their floodplains, and in the design channel in the case of the Otara River. Consequently, it is recommended that extraction on the Otara River be encouraged and extraction on the Whakatane River continues to be limited within the active channel to those reaches where it is beneficial. Extraction on the Waioeka and Waimana rivers should be carefully directed to appropriate locations. The cross-section monitoring programme should be extended to include the Waiotahi River if extraction is again carried out at larger rates.

References

P Balley, 2006: Fluvial Processess Report for the Whakatane and Whirinaki Rivers (Operations Publication 2006/01).

Bay of Plenty Catchment Commission, 1986: Plan R553.

M R Surman, 1998: Gravel Extraction – Kopuriki Stream, Waiotahi Contractors Application, Environment Bay of Plenty. (File 5920 R01)

Appendices

	Appendix I	Hilltop
Annendix II River Summari	Annendix II	River Summaries

Appendix I – Hilltop

1 Introduction

The Hilltop software package has now replaced Ricoda which had been used for the analysis of previous NERMN reports. The user-friendly, windows-based program offers a number of processes which allow capture, archiving, correction, presentation and analysis of cross-section data.

Hilltop software consists of several modules, of which Hilltop Manager and Hilltop Hydro are currently available at Environment Bay of Plenty and have been used for this report.

Hilltop Manager is a program to let you look at the data stored in a file and then do the standard database management functions of add, edit, and delete.

Hilltop Hydro and its add-in Hilltop Reach lets you store and analyse reduced level sections.

2 Sections

Cross-sections always contain the bed level measured to a survey datum, so they are always in terms of a reduced level (RL), i.e. all levels are known as a height above or below a fixed point, e.g. Moturiki datum (a fixed point on Moturiki Island near Tauranga).

Hilltop can also store data for profiles (these were known as long-sections in Ricoda). Profiles run up a river and are used to describe elevations of the river bed, such as the thalweg line (minimum bed level) or mean bed levels. Profiles can be entered manually, or are derived from cross-section data.

3 Reaches

A reach is a group of cross-sections that are linked together for the purposes of multi-section analysis.

The sections must be stored in the same file, be to a common datum, and be defined in order of increasing upstream distance.

The reach description is stored in the file with the sections. A reach has a time associated with it, and this is a very important parameter in carrying out the analysis.

4 Face Cards

A face card is a database record that contains additional information to sections and reaches, but does not vary in time.

The key fields in a face card are the section name and date/time because they identify the face card in space and time. All other fields on the face card are optional, but there are important fields in the Cross Section Details section. These fields let you specify the upstream distance of the section and the pin positions on the section.

Both the upstream distance and the pin positions of the cross-section will be transferred into the reach definition when creating a reach. The following Figure 1 is an example of the information contained in a face card:

Facecard for RL Section	2
	Instrument Details
Section W1	Instrument Save
Date and Time 15-May-1969 00:00:08	Serial No Durku & Dire
Measurement Details	Resolution 0
Method Code 0 Imperial Units	Calibration Date Cancel
Gauging No Input By	Site Details
Party Input Date	Location 0 m
Level Book Page No	Wind 0 km/h
Field Book Page No	Angle of Section 0 degrees
Survey Close 0 mm Survey Datum 0	Weather
Comment	Length of Section 0
Qualty 0	Min RL 0 Max RL 0
Water Level Readings on Arrival	Water Level Readings at Departure
Time 0 NZST (hhmm)	Time 0 NZST (hhmm)
Left Bank Right Bank	Left Bank Right Bank
RL 0 m ± 0 0 m ± 0	RL0 m±0 0 m±0
Stage 0 m ± 0 0 m ± 0	Stage 0 m ± 0 0 m ± 0
Cross Section Details	
Instrument Upstream Distance 0	Pin Datum 0
Left Pirc Name 1L	Easting 2862066. Northing 6354239. RL 4.895
Bight Pirc Name 18	Easting 2862572. Northing 6354138. RL 4.495
Resolution 0 Stop Bank Offsets	Left Bight

Figure 1 Face card

The pin positions are important for sections because they define the offset origin and orientation of the section. However, because pin positions are difficult to maintain in the river environment and are likely to change over time, they are not used in the volume calculations undertaken for this report.

5 **Processes**

There are a number of processes available in Hilltop, but the main features being used for gravel analysis are the "Graph Sections", "Edit Reach Details" and "Volume Calculations" processes in the Hydro Reach menu.

5.1 **Plotting Sections**

The "Graph Sections" command ("PLSection") draws a graph of one or more RL sections at a site.

Figure 2 shows an example of a plot of a cross-section on the Whakatane River for two survey dates.

Figure 2 Cross-section plot

Graphical outputs are very useful and by visual inspection of the plot it can be seen whether aggradation or degradation is occurring.

The same command is used to plot a profile of the river, thalweg or mean bed level, by deriving it from cross-sections in a reach definition.

Figures 3 and 4 are plots of the profile of the Whakatane River showing the thalweg level (lowest invert in a cross-section) and the mean bed level at two different survey dates. This is useful for obtaining a feel as to what is happening in the river system.

Figure 3 Profile of Minimum Bed Level (Thalweg)

Figure 4 Profile of Mean Bed Level

5.2 Reach Editor

The reach editor lets you define a new reach or a new date of a reach, and edit an existing reach.

Each section in a reach is identified by the site name and a survey time. For each section the left and right offsets can be specified. The left and right offsets define the part of the section which are used for the volume calculations. A graph gives a thumbnail sketch of a section in the reach and its offsets. Figure 5 illustrates the information displayed in the Reach Editor.

Reach	Editor					X	
	100 2 150 151	Reach Name: De Time 1	esignWidth Aug-2003 12.00.00	Use mo	st Recent Sect	ions	
	152 90 LowerWhak	WES. # \$Jun-2003 00:00:00					
	W13	Insert Section New	Reach Calc. Upst	ream Distance	Save		
μċ	w15	Delete Section	ndo		Close		
No.	Name	Date	Upstream	Left Offset	Right Offset		
1	W15	1Jun-2003 00:00:00	10445.0	50.0	140.0	-	
2	W16	1-Jun-2003 00:00:00	10915.0	145.0	226.0		
3	W17	1 Jun 2003 00:00:00	11525.0	130.0	250.0		
4	W17a	1 Jun-2003 00:00:00	11700.0	100.0	295.0		
5	W10	1-Jun-2003 00:00:00	12535.0	250.0	370.0		
6	W19	1-Jun-2003 00:00:00	13230.0	450.0	535.0		
7	W20	1 Jun-2003 00:00:00	14050.0	40.0	140.0		
8	W21	1Jun-2003 00:00:00	14530.0	40.0	124.7		
9	W22	1-Jun-2003 00:00:00	15020.0	388.8	460.0		
10	W23	1 Jun 2003 00:00:00	15685.0	470.0	560.0	•	

Figure 5 Reach Editor

5.3 Volume Calculations

The "Volume Calculations" command ("Volume") is used as one of the main tools for analysis of gravel movement. This command calculates the volume under the river bed level in a reach to a specified horizontal datum.

By running the volume calculations command for a particular reach at different times it is possible to derive the volume change between two survey dates between the sections.

There are two methods of calculating volumes available: a simple "End Area" method which multiplies the change in cross-section area at two cross-sections by the distance between them, and the "Ricoda Triangle" method, a more complicated general surface algorithm which takes into account the orientation of the cross-sections. The two methods can give quite different results from the same cross-section information.

For this report and in accordance with previous reports the "End Area" method is used as it has been assessed as being the most appropriate method for calculating the volumes. This is because the cross-sections are generally a long distance apart compared to their width. Changes in the channel cross-section between measured cross-sections, around a bend, say, are much greater than the error introduced by assuming the cross-sections are parallel. Thus, the error in the calculations is much more related to the distance between the cross-sections than the method of calculation. Once the volumes under the river are calculated in Hilltop they are exported into Excel to calculate the volume changes from one survey date to the next.

Volume calculations and graphs for the following rivers and streams are presented on the next pages:

- Otara River
- Waioeka River
- Waimana River
- Whakatane River (Lower and Upper)
- Ruarepuae
- Rangitaiki River
- Whirinaki River
- Horomanga River
- Magamate Stream
- Ohutu Stream
- Kopuriki Stream
- Kaituna River (Lower and Upper)
- Tarawera River

Otara Riv	ver abov	e conflue	ence													
Full widt	h of cros	ss-section	ns													
	10.000	Upstream	Sherner-	Terrore Ti	Ň	/olume Chang	10	NUMBER OF	an ave	don ser	Service -	Chapter	Area C	hange	1112-11	
Section	Label	dist (km)	Mar 66 to Feb 80	Feb 80 to	Jul 93 to Mar 96	Mar 96 to Oct 98	Oct 98 to Aug 00	Aug 00 to Jan-04	Mar 66 to Jan-04	Mar 66 to Feb 80	Feb 80 to Jul 93	Jul 93 to Mar 96	Mar 96 to Oct 98	Oct 98 to Aug 00	Aug 00 to Jan-04	Mar 66 to Jan-04
4	1.00	1.57	Contraction of the second			1000	1	There are	10025570	.9	48	-1	-36	0	43	45
5	1.25	2.025	4210	29367	-1381	-5039	0	14732	41889	28	81	-5	13	0	22	139
6	1,75	2.645	20023	37764	-3320	7578	0	13841	75886	37	41	-5	10	0	23	106
7	2.00	3.075	2998	25332	-2694	4732	0	8470	36636	-22	77	-7	11	0	17	76
8	2.25	3.555	15615	27789	-2452	4959	-308	-4756	40848	88	39	-4	10	-1	-36	96
9	2.50	4.14	50286	12818	11839	14997	-2372	3866	91434	85	5	44	42	-7	50	219
10	2.75	4.63	32557	499	15881	13547	-233	16230	78481	48	-3	21	14	6	17	103
11	3.00	5.085	27962	2859	7194	11786	-374	9236	58663	74	16	11	38	-8	24	155
12	3.25	5.30			-270	8573	-121	5951	14133			-12	20	6	17	31
13	3.50	6.02	42706	-1354	+322	15396	2837	1726	60989	17	-19	11	29	2	-11	- 29
14	3.75	6.355	12541	-1128	9359	1466	1057	-551	22744	58	12	44	-20	5	8	107
15	4.00	6.635	22306	3350	10597	-2521	2760	4422	40914	102	12	31	2	15	24	186
16	4.25	7.075	50164	-52	7599	9226	12297	10007	89241	126	-12	3	41	40	22	220
17	4.50	7.365	21734	-1586	761	5646	7941	3063	37559	24	1	2	-2	15	1	40
18	4.75	7.925	21915	22248	-2511	-705	9960	4223	55130	55	78	-11	-1	22	16	159
19	5.00	8.22	14660	9695	3147	3651	4784	4531	40458	44	-12	32	26	.11	15	116
20	5.25	8 595	28633	2999	7603	11650	1002	3490	55377	109	28	8	37	-6	L 24	180
21	5.50	8.965	34598	15496	2461	9396	-1021	4171	65091	79	55	6	14	0	19	173
22	5.75	9.44	36018	35567	-737	14889	3261	12022	101020	73	94	-8	48	14	32	253
23	6.00	9.92	37627	36130	-1757	17202	7561	16933	113696	84	56	1	23	10	39	221
24	6.25	10.225	32797	16349	-647	11718	3193	18555	81965	131	61	-5	53	3	83	316
25	6.50	10.695	43217	30571	273	14924	1955	29617	120557	53	79	6	10	6	43	197
26	6.75	11.105	9288	20179	7320	1614	4545	15462	58408	.7	19	29	-2	17	32	88
27	7.00	11.48	5751	2699	4179	2848	6335	8083	29895	38	-5	-7	18	17	11	72
28	7.25	11.785	6929	10941	-1296	2775	13010	6585	38944	7	76	-2	1	68	32	182
29	7.50	12.235	9995	29628	-92	1690	16349	15917	73487	37	55	1	7	5	39	144
30	8.00	13.025	20797	48440	3486	6151	7995	28509	115378	16	67	8	9	16	34	150
31	8.50	13.875			3650	30562	56390	16510	105112			1	63	115	3	182
32	9.00	14.65	-74741	112550	4776	37886	42953	16158	139582	-107	71	12	35	-4	39	46
33	9.50	15.37	-62736	56317	1465	12095	49190	23908	80239	-67	85	-7	-2	141	28	176
34	10.00	16.295	-42136	62922	-3218	532	81588	-5114	94575	-24	51	1	2	36	-39	27
35	10.24	16.73	-12449	30509	2129	-2837	28649	2667	49668	-32	89	10	-16	96	51	198
36	10.70	17.58	-28534	42776	3495	6561	35044	21615	80957	-35	11	-1	31	-13	0	-7
37	11.00	18.08	-10579	11938	-1607	12379	-4256	-2494	5381	-8	37	-5	18	-4	-10	26
38	11.50	18.93	-23288	50308	-7248	-822	443	-5682	13711	-47	82	-12	-20	5	6 3	5
39	11.80	19.515	-32822	47126	-3747	-9509	2035	2116	5199	-66	80	-1	-12	2	11	14
40	12.20	20.23	-23608	39877	-5058	-12864	729	5208	4284	-1	32	-13	-24	[4	-3
		Total	294400	870900	68900	262100	394200	328200	2218700	988	1477	176	490	637	696	4464
Rate (cubic	metres/yr	1	21000	67000	23000	131100	197100	164100	69300							

Environmental Publication 2006/15

Otara Riv	verabov	e conflue	ence										
Design v	vidth												
		Upstream		V	olume Chan	ge		Area Change					
Section	Label	dist (km)	Jul 93 to	Mar 96 to	Oct 98 to	Aug 00 to	Jul 93 to	Jul 93 to	Mar 96 to	Oct 98 to	Aug 00 to	Jul 93 to	
			Mar 96	Oct 98	Aug 00	Jan-O4	Jan-04	Mar 96	Oct 98	Aug 00	Jan-04	Jan-04	
4	1.00	1.57	0	0	0	0	0	-7	-40	0	35	-13	
5	1.25	2.025	-2509	-8299	0	12619	1811	-5	4	0	21	20	
6	1.75	2.645	-3382	3611	0	11156	11385	-6	7	0	15	16	
7	2.00	3.075	-2316	2463	0	4484	4631	-5	4	0	6	5	
8	2.25	3.555	-1928	821	-345	1801	349	-4	-1	-1	2	-4	
9	2.50	4.14	2816	1956	-2535	2745	4982	13	7	-7	8	21	
10	2.75	4.63	5573	3747	-1462	4534	12392	10	8	1	11	30	
11	3.00	5.085	3493	4428	1743	7007	16671	5	12	6	20	43	
12	3.25	5.38	-205	2639	2452	4464	9350	-7	6	10	10	19	
13	3.50	6.02	1554	2709	5435	8407	18105	11	3	6	16	36	
14	3.75	6.355	2400	1148	2323	3370	9241	2	5	7	4	18	
15	4.00	6.635	1190	1970	1145	2675	6980	6	9	1	15	31	
16	4.25	7.075	2511	7681	2244	8366	20802	6	25	10	23	64	
17	4.50	7.365	951	2714	3398	3820	10883	1	-7	14	3	11	
18	4.75	7.925	-1220	-3240	7125	2196	4861	-5	-5	11	5	6	
19	5.00	8.22	3582	-1819	2737	2365	6865	30	-8	8	12	42	
20	5.25	8.595	7088	1556	263	2419	11326	8	16	-6	1	19	
21	5.50	8.965	2411	-1064	-870	3614	4091	5	-22	2	18	3	
22	5.75	9.44	-837	-1603	2096	6996	6752	-8	15	8	11	26	
23	6.00	9.92	-1/66	6547	3630	6409	14820	1	12	8	15	36	
24	6.25	10.225	-112	5613	1567	6436	13504	-2	25	2	2/	52	
25	6.50	10.695	296	8585	1947	7413	18241	3	12	5	5	25	
26	6.75	11.105	1215	/3/2	4168	5950	18705		25	14	24	65	
27	7.00	11.48	-174	5682	5485	6035	17028	-4	6	15	8	25	
28	7.25	11.785	-484	566	3623	1955	5660	U	-2	9	5	12	
29	7.50	12.235	169	620	3068	3445	7302	0	5	4	10	19	
30	0.00	13.025	2026	3349	7500	9000 1900	21379		د ۱۸	10	10	30	
31	0.50	13.075	-2226	11050	0076	1000	19372	-0	24	4	-10	12	
32	9.00	14.00	-/U/0	10431	-3210	7430 14105	12973	-11	10	-13	29	21	
	9.50	10.07	-1994	-3830	2409	14100 0000	13002	 	-20	20	10	17	
34	10.00	10.290	2000	-15273	24910	-0992	3000	11	-0	20	-29	-9	
30	10.24	10.75	2014	-3070	47.44 6000	-2110	11442		-10	-4	20	17	
37	11.00	17.00	1959	2071	-0929	4570	997	-2	24	-12	19	10	
38	11.00	18.00	-1330	1728	-3214	11747	-037 23859	-7	12	 6	-10	-14	
30	11.90	10.55	-7771	-1720	-2013	-11747	-20009	-12	-10	-0- ר	-9	-42	
	12.00	19.010	-3744	-7501	-570	-4001	-17350	-2	-11	1	-5	-10	
40	12.20	20.23	-4305	-11217	410	-1300	-17000	-12	-21	-1	0	-34	
		Total	1200	57600	83400	139200	281400	16	111	165	331	623	

Otara River Volume Changes - Full Width of cross-sections

Otara River Volume Changes - Design Width

NERMN River and Stream Channel Monitoring Programme 2002/06

Otara River Volume Changes 1996 - 2004 - Full width of cross-sections

Waioeka	River															
Full widt	th of cro	ss-sectio	ns													
		Upstream			Va	lume Chan	ge					A	vrea Chang	e		
Section	Label	dist (km)	Mar 66 to	Feb 80 to	Aug 93 to	Jan 96 to	Sep 98 to	Sep 00 to	Mar 66 to	Mar 66 to	Feb 80 to	Aug 93 to	Jan 96 to	Sep 98 to	Sep 00 to	Mar 66 to
			Feb 80	Aug 93	Jan 96	Sep 98	Sep OO	May-04	May-04	🛛 Feb 80	Aug 93	Jan 96	Sep 98	Sep OO	May-04	Sep OO
1	0.25	0.40								0	-64	17	-179	0	68	-226
2	0.5	0.67	17176	-11745	5735	-24630	0	6397	-7067.4	128	-23	25	-4	0	-21	126
3	0.75	1.07	38416	2493	-3322	-4667	-207	-2758	29954.9	67	35	-41	-21	-1	7	39
4	1	1.66	38521	-2975	-14118	15948	6302	26114	69791.6	62	-45	-6	74	22	81	107
5	1.25	2.08	83201	-5950	-4750	22221	5710	12541	112972.5	338	17	-17	33	6	-21	377
6	1.5	2.53	130748	-2735	-2826	31825	9445	346	166803.2	236	-28	4	107	36	22	355
7 1.75 2.92 55073 2102 1898 36006 1378 6181 102637.8 46 40 5 78 -29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										10	140					
8	2	3.37	13595	12630	-1959	28407	-4853	4824	52643.7	15	17	-14	50	7	12	75
9	2.25	3.76	10299	8698	-6381	6645	13504	70573	103338.2	37	27	-19	-16	61	345	90
10	2.5	4.19	-9034	26965	13	6816	15907	79776	120443.2	-79	98	19	47	13	26	98
11	3	5.02	-73430	32165	12818	36638	-990	17187	24387.7	-98	-21	12	41	-15	16	-81
12	3.5	5.82	-62021	21696	10978	24242	-21885	20463	-6527.2	-57	75	15	20	-39	36	14
13	4	6.67	-37428	5918	-3268	22547	-9320	16619	-4932.3	-31	-62	-22	33	18	4	-64
14	4.5	7.47	-12242	39277	3027	47462	88290	-794	165019.6	1	159	30	85	202	-6	477
15	5	8.33	35814	50975	27341	26668	82621	-10596	212823	83	-39	33	-22	-9	-19	46
16	5.5	9.27	56749	-4753	16158	921	6151	-19585	55641.5	37	30	0	25	21	-22	113
17	6	10.12	47187	-10379	3896	6655	12354	-5616	54096.8	74	-54	9	-9	8	9	28
18	6.5	11.11	-86722	35018	1991	93170	-13907	-12012	17537.6	-249	124	-4	195	-35	-33	31
19	7	11.97	-110287	61657	-10538	100671	-11171	-21171	9161.3	-8	19	-20	39	9	-16	39
20	7.5	12.85	-82039	14117	-7280	10033	2726	-6311	-68754.4	-179	13	3	-16	-3	2	-182
		Total	53576	275174	29413	487578	182055	182175	1209971	423	318	29	560	272	499	1602
Total excl	. section '	1-2	36400	286919	23678	512208	182055	175779	1217039	423	382	12	739	272	431	1828
Note: secti	on 1 is clo	se to the riv	er mouth. 1	The position	of the mou	ith can cha	nge consid	erably, with	out a majo	r change in	sediment v	olume.				
For volume	analyses,	it may be p	prudent to le	eave this se	ction out.											

Waioeka	a River											
Design	width											
		Upstream		Vo	lume Chai	nge			A	rea Chang	je	
Section	Label	dist (km)	Aug 93 to	Jan 96 to	Sep 98 to	Sep 00 to	Aug 93 to	Aug 93 to	Jan 96 to	Sep 98 to	Sep 00 to	Aug 93 to
			Jan 96	Sep 98	Sep OO	May-04	May-04	Jan 96	Sep 98	Sep OO	May-04	May-04
1	0.25	0.40						46	-179	0	65	-68
2	0.5	0.67	9606	-24610	0	6061	-8943	25	-3	0	-20	2
3	0.75	1.07	-4721	-4764	-700	-5608	-15793	-50	-20	-4	-9	-83
4	1	1.66	-16373	-14540	8118	13261	-9535	-6	-28	31	53	50
5	1.25	2.08	-4750	-4106	7483	19412	18038	-16	8	5	40	37
6	1.5	2.53	-5105	3621	4055	8363	10934	-5	7	13	-4	11
7	1.75	2.92	-1324	12422	-3495	745	8348	-1	56	-30	7	32
8	2	3.37	-3355	22850	-5829	1191	14857	-13	46	4	-2	35
9	2.25	3.76	-6306	4480	12448	7538	18160	-18	-24	59	40	57
10	2.5	4.19	-2239	789	13519	8697	20766	8	28	4	0	40
11	3	5.02	8244	23705	-5041	3715	30623	12	30	-17	9	34
12	3.5	5.82	10371	10886	-17749	10101	13609	14	-3	-28	17	-1
13	4	6.67	-103	8059	-6996	8770	9730	-14	21	12	4	23
14	4.5	7.47	-4983	10620	6146	-1716	10067	2	5	3	-9	2
15	5	8.33	2643	-14302	-1388	-8223	-21270	4	-38	-7	-11	-52
16	5.5	9.27	-1179	-17887	6959	-12164	-24271	-7	0	22	-15	0
17	6	10.12	-3091	-13448	8567	-6431	-14403	0	-33	-1	0	-34
18	6.5	11.11	-3066	-13866	-7155	-10756	-34843	-6	4	-12	-21	-35
19	7	11.97	-8412	3929	-1533	-16960	-22976	-13	5	9	-18	-17
20	7.5	12.85	-2761	-15924	2416	-4994	-21263	8	-41	-4	7	-30
		Total	-36904	-22086	19825	21000	-18165	-30	-159	59	134	4
Total exc	. section	1-2	-46510	2524	19825	14939	-9222	-76	20	59	70	73
Note: sect	ion 1 is clo	se to the riv	/er mouth. 1	The position	n of the mo	uth can cha	inge consid	erably, with	iout a majoi	r change in	sediment v	olume.
For volume	e analyses,	it may be p	orudent to le	eave this se	ection out.							

Waioeka River Volume Changes - Full Width of cross-sections

Waioeka River Volume Changes - Design Width

Waioeka River Volume Changes - Full Width of cross-sections

Waiman	a River	Volume C	hanges -	Full width	h includir	ng floody	plain											
	Ricoda	Upstream			Area	Changes ()	m ²)							/olume Change	s (m ²)			Total
Section	Section	dist (km)	Aug 92 to	Dec 96 to	Oct 98 to	Nov 99 to	Jul O1 to	Dec-83 to	Sep 04 to	Aug 92 to	Aug 92 to	Dec 96 to	Oct 98 to	Nov 99 to	Jul 01 to	Dec-03 to	Sep 04 to	Aug 92 to
			Dec 96	Oct 98	Nov 99	Jul 01	Dec-03	Sep-04	Feb 06	Feb 06	Dec 96	Oct 98	Nov 99	Jul 01	Dec 03	Sep-04	Feb 06	Feb 06
1	1	0.43	1	60	4	4	7	15	- 2	88	0	0	0	0	0	0	0	0
2	2	0.98	-10	7	1	-4	0	21	0	15	-2737	18477	1460	-76	1736	9745	-578	26028
3	3	1.6	-15	+101	6	0	12	27	4	-67	-7768	-29982	2206	+1186	3450	14957	1381	-15943
- 4	4	261	-6	14	-17	0	1	-50	-3	-61	-10139	-43869	-5834	153	6163	-11802	383	-64946
5	5	3.27	-19	-21	8	-64	31	0	-6	-72	-8090	-2446	-3081	21187	10295	16541	-3236	-44286
6	6	4.03	-16	-16	+10	10	0	-2	10	-16	+13438	+13926	-598	+20351	14600	-555	1318	-32950
6a	7	4.83	-82	33	7	27	17	32	1	34	+39241	6787	-805	15148	9866	12021	4110	7886
7	8	5.43	-53	-3	-17	6	7	24	-4	-42	-40572	8892	-2941	9531	6975	16644	-1095	-2966
8	9	6.44	-4	-3	3	7	-1	-11	15	6	-28959	-3151	-7276	5804	2941	6304	5402	-18935
9	10	7.16	6	13	-1	16	.9	16	-6	24	-3712	3607	591	8225	-3568	1849	3352	10345
10	11	7.79	-1	-9	9	3	0	-5	.3	-6	-2199	1425	2416	5867	-2917	3517	-2572	5537
10a	12	7.99	3	-4	-8	20	-16	-5	20	11	248	-1271	48	2228	-1565	-982	1760	456
11	13	8.49	-7	.20	2	-7	-24	31	-6	9	-956	3913	-1531	3190	-9895	6601	3510	4838
12	14	9.08	51	-1	8	-2	1	6	-6	57	13066	5426	3110	-2775	-6784	10887	-3627	19303
13	15	9.74	3	1	10	0	0	1	6	20	17695	-125	5860	-1212	330	2124	-367	24304
14	16	10.4	21	2	-4	. 1	10	-2	-1	27	7629	985	1823	44	3300	-435	1220	14566
15	17	11.225	19	76	4	10	-17	39	-1	130	16255	32248	182	4430	-2949	15296	-1006	64456
16	18	12.035	-25	51	6	-1	22	19	-11	62	-2764	51629	3892	3737	2311	23374	-47.48	77430
17	19	12.95	10	39	2	7	-2	27	15	98	-6834	41284	3344	3478	9381	20708	2237	73597
10	20	13.665	13	34	-15	14	6	-52	16	17	8359	26200	-4834	7866	1614	-9147	11337	41394
19	21	14.61	7	22	3	6	-8	12	8	49	9319	26702	-6194	9332	-848	-19151	11486	30647
-20	- 22	15,165	-36	70	15	10	21	21	.7	94	-7874	25401	4764	4385	3469	9025	397	39567
21	23	15 825	37	6	16	2	-25	23	12	76	633	25050	9948	5807	-1363	14445	1748	56168
22	24	17.04	-2	-21	15	5.	-13	7	7	-15	21116	-9031	18347	7819	-23168	9632	11705	36620
23	- 25	17.815	5	8	-9	Б.	-12	-26	5	-23	1427	-5367	2502	4687	-9579	-12763	4809	-14284
24	26	18.41	-6	93	-20	-21	-19	-27	2	2	-174	29984	-8374	-4388	8967	-15827	921	6845
25	27	19.175	-8	-43	.13	2	35	2	15	-15	-5668	17428	-12837	+7390	6361	-9516	4964	-6657
26	28	20.12	+10	21	5	4	-2	-21	-5	-8	-8491	-12680	-4201	2866	15701	-8863	4655	-11013
27	29	20.655	-21	98	32	-2	-12	2	-10	87	-8183	31967	9635	650	-3658	-6079	-4033	21519
28	30	21.495	2	69	2	-13	-13	28	-5	70	-7985	70152	13945	-6355	-10149	12403	-6262	65749
29	31	22.455	-43	1	-90	0	0	26	3	-109	22014	33628	-42471	12874	6240	25671	-1149	300
30	32	23 805	37	-20	26	-27	-27	11	-36	-37	-7531	-12044	-43324	9454	-18225	24665	-22686	-69691
31	33	24,945	45	118	-39	-35	-46	-20	đ	22	46935	56000	.7779	-35017	-42061	4993	-21240	8145
- 32	34	25.98	13	38	.9	6	-30	24	5	47	30368	80646	-25072	-15088	-39723	2356	1951	35457
33	36	26.68	-2	51	-11	1223		19	-12	45	4053	31282	+7063	1.0000	1 58.0755	15138	-2387	41033
S - 1965	6	Total	-109	698	-79	-6	.99	196	14	614	-58300	496341	-99932	12550	-93174	141806	3659	402950

0.11.11.11.1	Ricoda	Unstream	Contraction of the particular	COOL MALE REPORTED	Area	Changes in	(⁵ a						1	olume Channe	(m ²)			Total
Section	Section	dist (km)	Auto 92 to	Dec 96 to	Oct 98 to	Nov 99 to	Jul D1 to	Dec-83 to	Sep 04 to	Aug 92 to	Aug 92 to	Dec 96 to	Oct 98 to	Nov 99 to	Jul 01 to	Dec-03 to	Sep IM to	Aug 921
es annance	areas a	Serve Price	Dec 96	0(198	Nov 99	Jul 01	Dec-03	Sep-04	Feb 06	Feb 06	Dec 96	Oct 98	Nov 99	Jul D1	Dec-03	Sep-04	Feb 06	Feb 06
1	1	0.43	1	26	5	3	4	6	- t.	46								
2	2	0.98	0	6	2	-7	-2	15	2	16	187	8790	2137	-901	662	5706	729	10213
3	3	1.60	-19	+107	10	0	16	21	1	-76	-5830	-31357	4010	-2136	4350	11211	1613	35313
4	4	2.61	-3	-23	-14	1	5	-56	.7	-98	-11150	-65510	-1696	93	10342	-17813	-1730	-78263
5	5	3.27	-12	+18	4	-23	27	3	.3	-28	-5164	-13408	-3048	7574	10418	19465	-3268	-29194
6	6	4.03	-13	-8	0	8	0	-1	7	1	-9801	-9541	1308	-6552	13337	+1566	1747	-2350
6a	7	4.83	-56	34	14	4	25	31	1	53	-27749	10697	5478	5117	13506	12026	3133	-6457
7	8	5.43	-41	-10	-16	1	10	16	- a	-46	-29336	7380	-960	1441	10568	14134	-876	-2148/
8	9	6.44	-4	-3	-4	4	0	-12	13	-6	-23347	-6139	-10785	2552	4803	2095	4911	-37719
9	10	7.16	-10	9	-1	.9	-2	9	9	7	-4900	2107	-1505	4507	-660	-1007	2237	309
10	11	7.79	-3	-9	8	-2	2	5	a.	- 2	-3729	-60	2161	2235	1832	1093	-3077	607
10a	12	7.99	3	-4	-8	20	-15	5	20	12	39	-1262	-90	1793	-778	-964	1742	490
11	13	8.49	5	18	0	.9	-19	30	4	7	-489	3588	-2097	2408	-8656	6408	3165	3410
12	14	9.08	Б	-2	9	0	10	2	-8	в	81	5043	2442	-2949	-5340	9462	-4578	4617
13	15	9.74	3	1	10	0	0	2	1	14	2562	-125	5860	-415	330	-136	-1730	7882
14	16	10.40	21	2	-4	1	9	-2	2	25	7629	985	1823	44	2970	-1541	296	10491
15	17	11.23	19	4	1	11	-5	8	5	44	16383	2450	-1052	5205	1645	2417	1465	23066
16	18	12.04	-6	15	6	-2	0	4	-3	24	9568	7887	2692	3815	-1949	4748	786	23960
17	19	12.95	10	0	-2	5	-t	2	0	22	6506	11184	1309	1508	-232	2610	-1624	20506
18	20	13.67	В	4	-20	15	8	-55	36	4	6391	4742	-8153	7357	2683	-19065	12782	10337
19	21	14.61	2	14	+1	1	-3	3	8	23	4574	8581	-9648	7627	2656	-24955	20537	11234
20	22	15.17	-37	67	11	3	21	19	3	81	-9850	22305	3022	1055	5120	6994	1314	16532
21	23	15.83	0	12	+1	4	-4	7	-5	13	-12093	25862	3398	2348	5737	8585	-2548	19515
22	24	17.04	-8	-14	9	3	-16	7	8	-24	-4745	-1387	5089	4465	-11932	249	2105	3422
23	- 25	17.82	0	-46	15	7	-3	-18	.3	-48	-3149	-23396	9361	3747	-7310	-9670	2260	-1343
24	26	18.41	-6	10	-19	-21	.9	-30	3	-72	-1712	-10890	-1335	-4447	-3563	-14327	36	18384
25	27	19.18	-8	-48	-13	2	35	2	15	-15	-5473	-14527	-12755	-7465	10078	-10692	6711	-4022
26	28	20.12	-10	20	3	6	2	-21	5	.9	-8830	-13019	-6127	3840	15701	-8863	4655	2313
27	29	20.66	-22	81	31	-1	-13	-0	-8	61	-8572	27156	9081	1383	-3926	-7655	-3417	29045
28	30	21.50	3	- 54	1	-14	-11	29	-4	57	-8061	56760	13650	-6037	-10028	8678	-4863	56312
29	31	22.46	-31	-21	-96	0	Ū.	19	0	-130	-13986	15696	-45363	-6286	-5280	22593	1983	-49915
30	32	23.81	16	-30	4	-25	-13	-19	-27	-93	-10989	-34410	-61903	-16772	-8775	9	-18405	-12407
31	33	24.95	31	-25	-58	-35	-33	-37	30	168	26207	-30747	-30294	-34390	-25854	31518	-16049	69214
-32	34	25.98	13	39	-10	6	-30	24	5	47	22676	7257	-34679	-15088	-32612	-6536	1950	-1983
33	35	26.68	-1	49	-11	12.11	1. 17.	18	12	43	4326	30285	.7295			14710	2626	27316
		Total	.148	105	-137	-25	-2	18	18	206	-101806	3057	.164945	47272	.10158	-43120	7390	31099

Waiman	a River	Volume C	hanges -	Floodplai	n only	- 15	1. S. 1											
	Ricoda	Upstream			Area	Changes (m ²)						V	olume Changes	(m ²)			
Section	Section	dist (km)	Aug 92 to	Dec 96 to	Oct 98 to	Nov 99 10	Jul O1 to	Dec-03 to	Sep 04 to	Aug 92 to	Aug 92 to	Dec 96 to	Oct 98 to	Nov 99 to	Jul 01 to	Dec-03 to	Sep IM to	Aug 92 to
			Dec 96	Oct 98	Nov 99	Jul 01	Dec-03	Sep-04	Feb 06	Feb 06	Dec 96	Oct 98	Nov 99	Jul 01	Dec 03	Sep-04	Feb 06	Feb 06
1	1	0.43	0	34	-1		3	9	- 4	42	0	0	D	0	0	0	0	0
2		0.98	-10	. 1	-1		1	6	-1	-1	-2924	9687	-677	825	1074	4036	-1307	10716
3	- 1	1.6	4	6	4	0	1	6	0	8	-1938	2475	-1804	960	-901	3645	-232	2196
	- 4	261	-2	37	3	- 1	-	6	2.4	30	1011	21641	-4138	60	-4179	6011	2113	22518
5	5	3.27	- 7	-3	4	- 41	4	1 (B	3	-44	-2926	10962	-33	-13613	123	2924	32	.2777
6	6	4.03	3	-8	-10	1 32	1 0	0	2	-17	-3637	-4305	-1906	-14799	1263	1011	-429	-22982
6a	7	4.83	-26	+1	-7	23	-5	1 0	0	-19	-11492	+3910	-6283	10031	-3640	-5	977	-14322
7		5.43	-12		1	1		6 (0	-1	1	-11236	1512	-1991	0000	3592	2510	-219	-4926
8	9	6.44	0	0	7	1	1 -1	0	2	5 - 12	-5612	2988	3509	3252	-1862	4209	491	6976
9	10	7.16	4	4	0	7	6	0 0	1	17	1268	1420	2096	3618	-2908	2936	1115	9545
10	11	7.79	2	0	1	1	1 3	0	0	5 3	1530	1485	255	3632	-4749	2423	505	5081
10a	12	7.99	0	0	0	0) (0 0	0	- O	209	.9	138	435	-787	-18	18	14
11	13	8.49	-2		2		1 4	E (†	1	2	-461	325	566	782	-1239	193	345	-511
12	- 14	9.08	45	1	-1		2 0	1 4	2	48	12985	383	668	174	-1444	1424	951	15141
13	15	9.74	0	0	0	0) (0 3	2	. 5	15133	0	0	-797	0	2260	1362	17958
14	16	10.4	0	0	. 0	10	1 1	0	1	· 3	0	0	0	0	- 330	1106	934	2370
15	17	11.225	0	72	- 3	1	342	1 31	7	* 87	-128	29798	1234	-865	4594	12879	-2471	35963
16	18	12.035	-30	36	0	1 8	22	15	-7	- 37	-12332	43742	1200	-78	4259	18625	-5534	49883
17	19	12.95	0	31	- 4	1 22	1	25	15	76	-13340	30100	2036	1970	9613	18197	3860	52436
10	20	13.665	5	30	6	1	1.4	1 3	-20	21	1968	21450	3319	509	+1069	9918	-1446	34657
19	21	14.61	5	8	4	1 35	-6	; 9	0	26	4645	18121	3454	1705	-3503	5864	-9051	21175
20	- 22	15,165	1	3	. 4	1 3		1 2	- 4	13	1976	3096	1742	3330	-1650	3031	-917	10609
21	- 23	15 825	37	-6	17		-21	16	- 17	62	12626	-812	6550	3459	-7100	5860	4297	24880
22	24	17.04	6	.7	6	1 12	1 3	0	- SI	* 9	25861	-7644	13258	3354	+11236	9583	9600	42776
23	- 25	17.815	5	54	-24	- 1		6 (a	8	26	4576	18029	-6859	940	-2269	-3192	2549	13773
24	26	18.41	0	83		0	10) 3	-5	71	1538	40874	-7039	59	-5423	-1500	885	29393
25	27	19.175	0	0	0	i (1) (0 1	0	0	+195	31955	-82	75	-3716	1176	-1747	27.466
26	28	20.12	0	1	2	1	2 0) 0	0	r 1	339	339	926	-974	0	D	0	630
27	- 29	20.655	1	17	1	1	1	10	-2	26	389	4831	754	-733	268	2576	-616	7489
28	30	21.495	-1	15	1	1 19	1	N 9	4	13	76	13392	295	-318	-122	3725	-1399	15649
29	31	22.455	-17	22	6	1		7	3	* 21	-8029	17932	2092	19140	-960	3078	835	34899
30	32	23 805	21	10	22	1 3	-16	29	.9	57	3458	22366	18579	26226	-9450	24656	-4281	81555
31	33	24,945	14	143	19	0	14	17	0	180	20728	86747	22505	627	16197	26525	-5191	134490
- 32	34	25.98	0	-1	1	0	1 0	0	0		7712	73389	9607	0	-7111	8892	19 11	92490
33	36	25.68	-1	2	0			1	1	f 3	+273	997	242			427	239	1632
S - 50	6 - C. C.	Total	39	593	58	19	.97	213	4	709	43506	493284	65013	59822	-83016	184927	-3731	661625

Waimana River Volume Changes - Full Width

Waimana River Volume Changes - Active channel

Waimana River Volume Changes

Whaka	atane Riv	ver Volum	e Chan	ges abo	ve Pekat	ahi							
		Full width											
				Area Ch	ange (m²)					Volume Chang	e (m³)		
Section	Distance	Apr 98 to	Dec 98 to	Sep 00 to	July 02 to	Jun 03 to	Aug 04 to	Apr 98 to	Dec 98 to	Sep 00 to	July 02 to	Jun 03 to	Aug 04 to
number	(km)	Dec 98	Sep 00	Jul 02	Jun 03	Aug 04	Jan 06	Dec 98	Sep OO	Jul 02	Jun 03	Aug 04	Jan 06
25a*	18.19	90	9	0	-3	30	16	0	0	0	0	0	0
26 *	19.01	32	65	0	7	12	7	50302	30465	0	1434	17117	9051
27	19.72	-48	12	11	-57	-74	60	-5352	27330	3891	-17722	-22216	23509
28	20.595	52	3	11	2	23	-11	2320	6377	9734	-23857	-22628	21373
29	21.355	162	6	17	-1	23	-15	81604	3144	11012	352	17172	-9989
30	22.515	51	16	14	3	20	-16	123410	12290	18731	808	24478	-18085
31	23.285	91	-7	-70	-6	41	-2	54787	3299	-21506	-1359	23349	-6943
32	23.515	44	31	5	-22	33	-23	15694	2706	-7546	-3200	8520	-2919
33b	24.05	119	16	13	-1	25	-16	43716	12388	4680	-6069	15607	-10471
34	24.53	4	0	3	3	-14	14	29441	3831	3795	504	2785	-491
35	25.12	2	5	12	8	21	-6	1727	1550	4444	3149	2075	2507
36	25.601	20	0	23	2	8	-3	5226	1264	8514	2381	6818	-2090
37	26.185	65	-43	8	7	16	4	24949	-12620	9214	2796	6984	226
38	26.61	-16	15	-16	5	-48	76	10345	-5869	-1804	2587	-6708	16944
39	27.235	-58	-29	7	-11	12	19	-23361	-4186	-2957	-2005	-11352	29604
40	28.025	52	4	-2	-3	-8	14	-2413	-9790	1922	-5641	1608	13093
41	28.58	-164	-4	3	-8	-18	19	-31155	120	340	-2935	-7007	9185
42	29.55	0	-1	6	6	36	14	-79648	-2161	4381	-623	8876	15710
43	30.06	1	-16	25	2	-10	-29	213	-4134	7629	2156	6537	-3994
44	30.785	47	-2	34	11	-5	31	17504	-6463	21210	4814	-5379	653
45	31.63	77	8	14	-6	115	-46	52513	2328	20085	2130	46753	-6320
46	32.17	-18	-3	37	-27	1	10	16006	1194	13692	-8925	31341	-9600
47	32.66	-10	-27	5	-27	-41	22	-6788	-7552	10599	-13218	-9710	7851
48	33.405	63	-53	13	-14	57	6	19864	-29950	6934	-15238	5982	10290
49	33.715	55	-3	-12	-6	69	-23	18336	-8650	27	-3090	19427	-2658
50	34.44	-101	-94	14	-4	171	24	-16704	-35299	710	-3496	86912	380
51	34.955	173	37	-42	-7	-54	15	18380	-14869	-6967	-2697	30063	10111
52	35.695	13	-15	-16	-33	36	-59	68815	7894	-21082	-14739	-6662	-16096
53	36.635	46	15	1	-54	8	-3	27872	124	-7015	-40614	20974	-29157
54	37.275	-8	39	-2	-68	-50	-12	11806	17536	-265	-38963	-13253	-4871
55	38.675	168	9	-11	-13	80	11	111556	33612	-8638	-56691	21028	-855
56	39.475	63	19	9	-22	73	-88	92435	11156	-511	-14011	61122	-30795
57	40.26	108	9	5	3	-28	7	66983	11116	5656	-7608	17550	-31597
58	41.66	0	0	0	0	0	0	75503	6556	3273	0	0	0
	Total	1114	109	88	-333	559	15	875886	54737	92182	-259589	378162	-16444
* Note: Sec	tion 25a and 26	have not been su	rveged in July	2002. Volume	changes therefo	ore refer to perio	d 2000-2003. IP						

Whaka	tane Ri	ver Volu	ime Cha	anges ab	ove Pe	katahi								
		Active Ch	annel											
				Area Cha	nge (m²)				١	Volume Chang	e (m³)			
Section	Distance	Apr 98 to	Dec 98 to	Sep 00 to	July 02 to	June 03 to	Aug 04 to	Apr 98 to	Dec 98 to	Sep 00 to	July 02 to	June 03 to	Aug 04 to	Apr 98 to
number	(km)	Dec 98	Sep 00	Jul 02	Jun 03	Aug 04	Jan 06	Dec 98	Sep 00	Jul 02	Jun 03	Aug 04	Jan 06	Jan 06
25a*	18.19	12	5	0	10	2	11	0	0	0	0	0	0	0
26 *	19.01	19	1	0	7	4	12	12691	2637	0	6694	2654	9159	33835
27	19.72	-27	12	10	0	-67	81	-2676	4579	3514	2455	-22417	32880	18335
28	20.595	17	3	11	3	9	-4	-4188	6210	9185	1243	-25489	33712	20673
29	21.355	4	9	9	0	2	-3	7873	4502	7822	1058	4140	-2510	22885
30	22.515	37	28	12	2	6	-10	23820	21783	12215	1519	4602	-7174	56765
31	23.285	56	-7	-2	-6	46	-2	35865	8313	3816	-1434	19977	-4334	62203
32	23.515	32	31	5	-22	32	-23	10160	2712	388	-3199	8913	-2854	16120
33b	24.05	49	15	8	8	20	-18	21611	12249	3527	-3549	13841	-10937	36741
34	24.53	5	0	3	3	-15	14	12619	3727	2712	2762	1242	-909	22152
35	25.12	-10	3	12	6	5	5	-1772	763	4644	2564	-2784	5522	8938
36	25.601	7	0	23	2	2	1	-833	622	8685	1904	1675	1295	13348
37	26.185	45	-43	8	7	-6	4	15150	-12620	9218	2796	-1356	1352	14540
38	26.61	-1	11	-8	1	-61	76	9373	-6765	-36	1762	-14368	16971	6937
39	27.235	-121	-22	9	-10	-4	12	-38086	-3417	153	-2822	-20418	27485	-37105
40	28.025	12	4	-2	-3	-8	11	-43311	-7153	2554	-5144	-4550	9226	-48379
41	28.58	-137	-10	2	2	-34	32	-34956	-1495	-121	-248	-11645	11929	-36537
42	29.55	52	3	3	6	9	14	-41402	-3139	2254	4075	-12337	21907	-28642
43	30.06	21	5	7	2	6	-39	18587	2150	2599	2013	3704	-6405	22649
44	30.785	29	7	7	11	-11	9	18026	4609	5148	4582	-1814	-10688	19863
45	31.63													
46	32.17													
47	32.66													
48	33.405													
49	33.715													
50	34.44													
51	34.955													
52	35.695													
53	36.635													
54	37.275													
55	38.675													
56	39.475													
57	40.26													
58	41.66													
	Total	101	55	117	30	-64	183	18551	40267	78277	19029.6	-56430	125626	225321
• Note: Sec	tion 25a and 26	S have not bee	n surveyed in J	luly 2002. Volur	ne changes th	erefore refer to	o period 2000-2	2003. IP						

Whakatane River (above Pekatahi) Volume Changes - Full Width

Whakatane River (above Pekatahi) Volume changes - Active channel

Whakata	ne River I	oelow P	ekatah	ni - Full	Width														
Initial calcu	lation on f	ull width c	fsurve	yed secti	ons (first	survey	y 1963-7	70)											
1963 secti	ons used v	vhere pos	sible -	available	e from se	ction 1	5 up - 1	970 othe	erwise										
Question n	narks whei	re change	e of alig	nment m	iakes cor	nparis	on unre	present	ative										
	Upstream				Area	Chang	e (m²)							Volu	me Chang	je (m³)			
Section	dist (km)	63/70-77	77-84	84/77-92	92/84-93	93-96	96-98	98-2003	2003-04	63/70-04	63/70-77	77-84	84/77-92	92/84-93	93-96	96-98	98-2003	2003-04	63/70-04
1	0	185	-24		-321	98	274	-534	-1	-323	0	0		0	0	0	0	0	0
1a	0.265	46	26		-20	-62	-40	49	-144	-144	30509	227		-45058	4766	31037	-64203	-19190	-61911
2	0.82	15	13		15	-20	-12	73	-117	-33	16882	10858		-1408	-22582	-14508	34038	-72424	-49144
2b	1.195	-47	16	-80	17	22	-117	55	-192	-326	-6053	5430	-14945	6019	508	-24314	23992	-57937	-67300
2a	1.67	0	0	-87	-4	-20	-102	45	-79	-247	-11253	3651	-39620	3200	467	-51987	23757	-64365	-136151
3	2.195	49	0	-11	-22	0	-59	41	-76	-78	12689	0	-25907	-6682	-5222	-42327	22661	-40678	-85465
За	2.735	-66	-42	18	-13	17	-128	91	-63	-186	-4684	-11291	1603	-9406	4810	-50591	35607	-37523	-71475
Зb	3.2	60	-25	-8	-11	6	-47	49	-109	-85	-1497	-15587	2295	-5692	5380	-40668	32497	-40100	-63372
4	4.09	40	-39	-20	-8	-6	-64	37	16	-43	44263	-28330	-12411	-8658	-165	-49331	38309	-41223	-57546
5	4.55	3	-52	0	24	10	-87	59	-266	-309	9758	-20740	-4572	3601	773	-34547	22210	-57310	-80827
6	4.96	34	0	-41	-10	-7	-56	51	-233	-262	7560	-10606	-8303	2846	526	-29205	22647	-102169	-116704
	5.415	9		-21	-21	19	-23	12	-58	-84	9770		-14009	-7120	2799	-18121	14287	-66143	-78536
7	5.95	-36		37	-25	18	-27	35	-61	-60	-7450		4522	-12359	9778	-13495	12332	-31886	-38558
7/1a	6.31	23		-36	-12	18	-16	-5	-7	-35	-2378		334	-6615	6313	-7657	5382	-12263	-16883
8a	6.845	-13		-33	-19	36	-1	-1	-19	-50	2865		-18399	-8355	14470	-4467	-1598	-6875	-22358
10a	7.48	145		-73	32	-22	-43	22	-21	40	42101		-33675	4102	4419	-13886	6613	-12572	-2899
10b	7.92	-2		53	-51	60	-44	9	-19	6	31434		-4321	-4112	8172	-19056	6845	-8862	10100
11	8.395	134		-49	-60	-12	60	3	-20	56	31243		1094	-26241	11155	3899	2736	-9242	14644
12	8.98	-67		17	-23	-8	2	-5	18	-67	19472		-9057	-24345	-6033	18229	-799	-500	-3032
13	9.485	54		-22	-23	-6	-12	24	-11	4	-3331		-949	-11784	-3553	-2485	4722	1744	-15636
14	9.885	16		-6	36	6	-29	19	-27	15	13975		-5448	2668	-36	-8181	8537	-7563	3952
15	10.445	5		-19	-24	-15	16	-12	-14	-63	5876		-6861	3448	-2731	-3696	1839	-11358	-13483
16	10.915	81		-66	21	14	2	28	-14	66	20312		-20047	-507	-459	4151	3795	-6518	727
17	11.525	-299		147	-11	34	70	-10	-8	-77	-66536		24562	3517	14558	21634	5733	-6882	-3414
17a	11.78	101		17	13	4	69	3	20	227	-25336		20905	410	4829	17661	-789	1475	19156
18	12.535	110		30	35	16	-32	14	80	254	79361		17885	18090	7732	13883	6581	37854	181386
19	13.23	50		74	-12	17	-74	5	-14	46	55592		36104	8027	11650	-37210	6532	23120	103815
20	14.05	196		-32	-5	-10	28	19	26	221	100910		17312	-6926	3101	-19155	9473	4993	109707
21	14.53	98		27	3	-18	-2	18	-7	119	70521		-1050	-648	-6469	6294	8805	4496	81949
22	15.02	296		?	-1	-24	31	10	6	319	96680		?	393	-10180	7267	6975	-227	100908
23	15.685	123		9	-18	18	34	17	-6	177	139365		?	-6494	-1916	21545	8957	109	161566
23a	16.275	155		-43	-27	11	14	11	2	124	81867		-9745	-13629	8718	14035	8266	-1053	88459
24	16.89	78		38	-4	6	44	-6	2	158	71681		-1429	-9631	5122	18000	1782	1315	86839
24a	17.29	?		78	7	32	70	-37	0	150	?		23282	709	7475	22920	-8471	398	46314
25	17.71	587		-125	10	-20	380	6	88	926	?		-9659	3469	2554	94565	-6519	18511	102922
Total	(excl.XS1)	1978	-103	-227	-211	114	-195	729	-1324	762	866168	-66388	-90509	-155171	80729	-189767	303532	-620845	127749

NERMN River and Stream Channel Monitoring Programme 2002/06

Whakat	ane Rive	r belo	ow Pel	catahi	- Act	tive C	hanne	1																	
Active Ch (Note: cr	annel abo oss-sectio	ove cros oris 17 i	ss-sech and 24a	on 15 omitte	appro d fron	orphas n 1962	e char -1977	ge fro analyr	im grav als due	el to sar to chan	nd bed) nel aligr	nment ch	anges)												
	Upstream		1			Area	Chang	e (m²	•				-		-	- í	1	/olume C	hange (m	5	-		_		
Section	dist (km)	63-77	77-85	85-90	90-93	93-96	96-98	77-98	63-98	98-03	1003-04	63-04	63-77	77-85	85-90	90-93	93-96	96-98	77-98	63-98	77-03	63-03	98-03	2003-04	63-04
15	10,445	74	-36	7	-24	9	10	-52	22	-23	-3	-4	0	0	0	0	0	0	0	Ô	0	0	0	0	0
16	10.915	19	-78	12	21	12	-15	-48	-29	26	-5	-8	21826	-26616	4362	-807	721	-1056	-23396	-1570	-22573	-747	823	-2046	-2793
17	11.525	ŝ	20	7	-11	21	-11	- 34	34	-11	1.24	19		-14705	5510	3310	9747	-7507	-3797		036	4633	4633	-2960	-2124
178	11.700	-24	-68	-16	14	20	31	-19	-43	3	7	-33	-2447	-5044	-1292	\$\$2	5214	2544	1974	-4270	961	-5203	-1013	368	-1110
18	12.535	29	18	10	15	13	- 5	61	90	12	3	105	1677	-18981	-2505	11341	12592	13332	15799	17476	21291	22968	5492	3818	26785
19	13.230	10	-17	23	-9	14	-16	-5	5	0	-13	-8	13479	452	11469	2317	9316	-4052	19502	32981	23613	37092	4111	-3591	33500
20	14.050	-4	-50	47	-6	-10	-4	-20	-24	17	0	-7	2382	-27059	20690	-6317	1506	-6061	-9953	-7571	-2741	-359	7212	-5419	-5778
21	14.530	12	-15	2	-3	- 4	-4	+13	-1	14	-3.	10	1007	-15482	11641	-2276	-1397	+138	-7652	-5765	+139	1748	7513	-813	935
22	15.020	90	-58	-13	-11	15	7	-60	30	8	-4.	32	24913	-17772	-2835	-3468	4722	1749	-17604	7309	-12701	12212	4903	-1815	10397
23	15.685	17	-14	8	-17	8	2	-13	4	10	1	14	35437	-23722	-1572	-9301	7657	3233	-23705	11732	-18493	18944	5212	-1191	15753
23a	16.275	- 44	-6	-15	-28	27	1	-21	23	7	2	32	18027	-5891	-1736	-13324	10329	862	-9760	8267	-4809	13218	4951	617	13835
24	16.890	2	-0	0	-3	9	.17	23	25	-3	2	24	14379	-4300	-2027	-9577	11087	5538	721	15100	2039	16418	1318	1140	17566
248	17.290	1.11	-106	120	7	-1	39	59	59	-41	18	37	903226	22690	25467	848	1540	11265	16430		7737	-8693	-8693	4080	11817
24/25	17,710	+43	0	0	68	-16	65	117	74	10	25	100	-16588	-22015	25098	15788	-3644	21831	37058	36902	30578	30422	-6480	5082	23074
8	Total	226	-410	200	13	107	133	43	269	28	24	321	114974	-203885	100286	-10914	69470	40660	-4383	110591	25599	140573	29982	1277	1418-89

Whakatane River (below Pekatahi) Volume Changes - Full Width

Whakatane River (below Pekatahi) Volume Changes - Design Width

Ruare	puae St	ream C	hange	<u>s</u>											
survey	ed Mar 93	3, Mar 95,	, Jan 97,	Apr 98, J	lun 00, Ji	un 04, De	ec 05								
				Volun	ne change	s (m³)					Area	a changes	(m ²)		
Section	Distance	Mar 93 to	Mar 95 to	Jan 97 to	Apr 98 to	Jun-00	Jun-04	Mar-93	Mar 93 to	Mar 95 to	Jan 97 to	Apr 98 to	Jun-00	Jun-04	Mar-93
number	(km)	Mar 95	🕺 Jan 97	🛛 Apr 98	Jun-00	to Jun-04	to Dec-05	to Dec-05	Mar 95	Jan 97	Apr 98	Jun-00	to Jun-04	to Dec-05	to Dec-05
1	1.22								-30	-17	-6	-10	2	26	-35
2	1.32	-3152	-819	-271	-927	-1945	3033	-4081	-33	1	0	-8	-41	34	-46
3	1.435	-4638	-207	290	44	3488	2807	1784	-48	-4	5	9	101	14	78
4	1.53	-3849	-1285	571	1007	10205	-215	6435	-33	-23	8	11	114	-19	58
5	1.61	-1955	-1734	403	-120	5140	-1972	-238	-15	-21	3	-15	15	-30	-64
6	1.70	-3304	-2844	-1095	758	8872	-4413	-2026	-57	-43	-27	32	182	-68	20
	Total	-16898	-6889	-102	762	25760	-759	1874	-216	-107	-17	19	373	-42	10

Lower F	Rangitai	ki River	r Volum	he Chan	iges									
				590.0	Area Ch	ange (m ²)			1.0		Volume	Change (m ²)	10000	
	Section	Distance	Jun 67 to	Oct 93 to.	Dec 95 to	Jan 99 to	Jun 03 to.	Jun 117 10	Jun 57 1a	Oct 93 to	Dec 95 till	Jan 99 ta	Jun (13 to.	Jun II7 to
Location.	Number	(km)	Oct 93	Dec 95	Jan 99	Jun 03	Aug D4	Aug 04	Oct 93	Dec 95	Jan 99	Jun 83	Aug 04	Aug 04
new mouth	1	0.58	括	-16	-10	11	-40	40	-4271	-4602	-2779	3096	-11660	11673
al. toward	2	0.89	24	.12	-15	4	-23	2	6004	-587	-3845	2295	-9797	6930
	3	1.43	-22	-4	-6	- 5	- 4	- 34	436	3085	-5776	2451	-8729	4534
	4	188	-6	2	3	4	「売」	4	-3620	103	-361	1070	-1770	-4479
	5	2.23	18	1	-10	1	- 4	- 11	3647	1013	-2047	2965	2018	3019
		2.63	15	-11	-15	11	1	1	6696	-1595	-5,758	3648	2209	1381
	1	304		- 4	-11			- 22 - 1	3613	-24/2	-5858	1950	-405/	-3421
Sure De	1 2	341	4		4		10	13	1415	-1618	-2505	-1050	2074	-1583
Oved H3		2.01				11	1	1.5	2,750	2000	-0400	-2000	2000	700
	10	4.07			- 11	-11-	10	47	6264	2000	-0009		12725	1000
	17	190	31			.12	100	46		6601	-300	.2190	0000	10074
	10	6.17	3	-12	13	3	17	n	12143	-2236	111	-2943	3397	-8611
	14	6.77	6	- 1	-11	1.1		100	710	-4083	38	1069	6272	2064
	16	6.34	-1	- 10	4	1	d i	-10	1372	404	-4719	3044	2700	1900
	16	6.74	4	-10	2	2	1.1	-34	-1612	-3498	-1454	1075	1451	6961
	17	7.13	-30	2	-8	-18	0	-64	4673	1459	-1730	-2839	1422	14020
	18	7.43	-21	2	6	-3	-17	-33	-8214	603	138	-3237	-2718	13704
	19	7.94	-14	8	4	-15	13	-6	-8217	2661	2662	-4964	-1118	967E
	20	8.2	. 7	-11	-13	4	4	-17	-963	-340	+1262	1665	1130	-3090
1	- 21	8.75	-28	3	-54	6	12.	-45	-6615	-2105	-76.35	3605	4316	17066
1	- 22	9.15	-23	-6	-77	10	-14	.60	-8963	-637	-8191	3171	-5102	20723
1 ·	- 23	9.51	9	-52	-1	-2	17	-29	-2589	-10422	-4986	1439	\$97	-(994)
1	- 24	9.89	- 21	-2	-56	7	13	-43	-2993	+10084	-3217	956	B16	14583
		10.39	- 6	-,19	-1	10	-13	-38	-8332	-5205	-5713	4236	-6430	31412
		10.74	2	-2-	8		5	16	-11145	-3090	210	1725	-1520	3780
Edgecunde	- 27	11.19	-1-	-49	12	-14	- 31	-76	406	-10600	4510	-3040	-3/01	-12706
	- 204	11.34		- 2-	-54	- 124	1.5			-3254	-79	-,2980	-14,4	
	- 200	11.54	-		0	-3-				-1533	-1361	-2106	1990	
- 1. · · ·		11.05		- 2-	1.44	-2-				-3040	241	-1004	2015	
		12.61	-	- 19	11	-3-	-20			1340	-20.0	-1094	1010	
	- 2	12.91	-	100		.15	10			1110	2116	-3480	200	
	10	13.23		- 3-	3	- 8	24			748	676	-3949	2311	_
	- 34	13.60		1	6	3	4			.107	1014	-2300	4014	
	36	14.08		.3	6	- A	-10			412	203	-3007	4901	
	美	14.49		- 2	15	-18	5			-1212	4435	-5329	2604	
	37	14.95		-41	12	10	4			-8169	5032	-1528	627	
	38	15.11		-13	35	-20	-8			-6704	4001	+1278	2060	
	39	15.46		÷	-20	2	-10			-1248	1009	-3199	-3193	
	40	15.77		-44	-2	+13	13			-1425	-3294	-1777	-3495	
	41	15.96		3	2	2	4			-1039	36	-1062	-815	
	41a	16.16		-8	0	- 6	0.			-451	224	806	415	
	42	16.54	_	-6	11	- 0	=13			-2540	2100	1119	-2461	
	434	16.97	_	-34	-1	-21	-10			-8421	2160	-4478	-4667	_
	438	17.14		-36 -		-25	10			-6910	423	-3885	-19	_
	432	17.46	-	-10	10	-97	14			-7300	2617	-8364	3791	
	44	17.85		-2-		- 2 -	40			-1673	2.8	6549	-17.20	
	45	10.75			-59	- 14				-109	-3900	-2615	-6128	
		18.61		1	1	1	-19			-1807	-424	-1147	-2146	
	478	19.12		-30	8	- 2				-0509	2533	290	0/4	
	4/1	19.34		- 47	10	-10	-10			-5607	1930	2041	-190	
	40	19.56		- 40	4	- 2				-40,00	21/	20/5	1213	
		20.00		- 10		- 13	- 20			-1126-1	-0,075	107	1313	
	510	20.20				- 20				-0000	4999	040	1000	
	610	20.01		- 60	12	- 24	111			-1002	-4,003	2022	34063	
		21.91		.10	-		.13			19644	3903	.7146	34977	
	0	21.61		12		3	-00			3048	.564	-3147	-8000	
	0	22.03		14	.59	23				-1268	4000	6250	8154	
	- 4	22.24		.10	0	.12	.7			-104	-3211	- 6%	3064	
	4	22.963			4	2	.5			-1096	1041	-6419	-7960	
	6	23.49		.7	0		.2			.112	1301	-1996	400	
1	9	23.757		16	X	-13	-6			1145	3842	-3329	-1203	
Te Teko	98	24.18		4	-13	0				2912	2515	-2472	-2807	-
1 I	59	24.55		2	. 6	.6	10			306	-3578	-870	1690	
		Tetal		-565	.155	224	.416	387	-28773	191997	63400	47218	457672	222786

Rangitaiki River Volume Changes below Te Teko

Rangitaiki River Total Volume Changes 1987 to 2004 below Edgecumbe (XS1 - XS27)

Whirinaki Rive	r Change	es, Full V	Vidth of	cross-se	ection							
Surveyed Nov	94, Nov 9	97, Jul 9	9, Aug (03, Sept 0)5							
			Volume (Change (m	³)				Area (Change (m ²)		
Section Distance	Nov 94	Nov 97	Nov 94	Jul-99	Aug-03	Nov 94	Nov 94	Nov 97	Nov 94	Jul-99	Aug-03	Nov 94
number (km)	to Nov 97	to Jul 99	to Jul 99	to Aug 03	to Sept 05	to Sept 05	to Nov 97	to Jul 99	to Jul 99	to Aug 03	to Sept 05	to Sept 05
1 0.570)			0	0	0	4	-2	2	13	17	32
2 1.52	2802	202	3004	110/6	14638	28717	2	2	4	10	14	28
<u> </u>	1 2100	-1878 10000	222	5158	10751	2234U 56507	- 4	-8	-4	17	21	42 70
5 4 57	25660	21600	47260	-3601	10/01	43520	וכ ה	-11	73	-17	-10	72 -10
6 5 87	1 6349	-668	5681	7599	5309	18589	4	10	-3	6	18	-10
7 6.66	5 -35713	18644	-17069	585	20995	3044	-93	36	-57	-5	35	-31
8 7.210	-25826	7568	-18258	-1571	8192	-12641	-1	-9	-10	-1	-5	-16
Total	-7153	62294	55141	9047	83475	160106	-43	60	17	18	107	156
60000 50000 40000 30000 10000 -20000 -30000 -40000	1						umber		6		Nov 94 to No Nov 97 to Jul Jul-99 to Aug Aug-03 to Se Nov 94 to Se	v 97 99 03 pt 05 ot 05

Horoma Survey Full We	anga Rive ed Mar 96	er Volum 5. Jan 97.	e Change Mar 98, J	ns Jul 99, Ju	101,									
Pull Wil	101		-	- Unite	res Change	602		-		_	Area Cho	(fuel anno		
Section	Ficiala	Distance	Mar96	.Jan-97	Mar-98	34.99	Mar-96	Mar 96	Mar-96	Jan 97	Mar 98	3499	Mar 96	Mar 66
number	number	(km)	to Jan 97	to Mar 98	to Jul 99	to Jul 01	10 Jul 99	to Jul 01	to Jan 97	to Mar 90	to Jul 99	10 64.91	to Jul 99	to Jul D1
1	1	0.256	0	0	0	0	0	0	÷	- fi		10	- 2	12
-	1 <u> </u>	0.968	-2487	4401	4722	4097	6636	10733	- 1		12		17	18
- 2		1.20	278	470	1302	-410	2130	1720	- 1	0			10	
-		2.460	-1499	-074	10912	2918	1002	10964	à	1	58	- 2	10	- 7
	6	3.520	. 899	-9619	11677	-678	2967	2079	11	-21	7	- 1	3	.0
1	1	4,312	1991	-10206	-1169	-1967	-0374	-11241	- 4	6	8	-8	-20	-28
	8	4.975	2609	-6240	-\$170	2653	-7801	-5148	14	-11	-6	16	-3	13
		5.688	7204	-6456	-1478	5903	-730	5173			- 2		- 2	3
		6.900	-1394		-4340	-6340	-0336	-13664	-10		- 12		-21	-30
10	12	7.360	3199	27.45	-14/0	-21546	2461	-21085	7	1	- 21	.76	-30	-10
1	13	8.016	-2065	-2437	2144	-32241	-2368	-34599	-13	-11	28	-23	4	-19
5	14	8.415	-2577	4027	-11515	-4208	-18119	-22327	1	-10	-85	1	-94	-93
		Tetal	8745	32137	6986	6 5066	.16705	31111	12	-41	-14	-421	<i>n</i>	.194
Code 1845	440.		and the Party of the		A	tion do Re						1		
Full We	Dents	Distance	Autoria C	Miles	Adda Cho	hards (m ⁻¹)	-							1 - Y
number	number	(ket)	to Jul-D4	to Sept-04	to 3404	to Sept-04	-							
	C 1	0.256	0	0	-10	40	7							
	2	0.968	.7106	24031	-10	-20	-							
- 21	()	1.129	-830	2875	0	1	-			_		_	_	
		1.780		13101	0	11								
		2.662	ě		ő	1	-							
4		3.062	i i	1062	o	10								
	6	3.520	-2161	6424	. 9	13								
- 5	i.	3 900	-2917	3057										
		4.312	-1143	4557	1 23	8 25								
		4.51/	1500	54,00		8 U	-							
7	-	6.216		6372	10	8 5	-							
	6 6	5.688	-1772	3496	-t0									
8	é - 11	6 128	.7744	-7167		-40								
1	10	6.512	-12495	6622	-39	6 (1)	3							
	5 - B	6,920	-11787	4953	- 18	8 2	-							
	1	9,016	- 30.0	-41/0	10		-							
6	14	8.415	-4090	4993	6	6 👬				-				
	-	Tetal	-10862	67308	.105	191								
Volume change (cubic metres)	0000 0000 0000 0000 0000 0000 10 0000 10 0000 10 1		oromai 0 3a	1ga Riv	er Volu	me Cha	nges (1	Full Wic	#h)	.	U 11			
. d	\$000 4				9 11 16 44 (H	lection n	umber #	AJ-04 16 Sept.	Ģ#					

Horoma	nga Rive	r Volum	e Change	es				
Active C	hannel							
Active C	hannel		Volume C	hange (m ³)	Area Cha	ange (m ²)		
Section	Ricoda	Distance	Jul-01	Jul-04	Jul-01	Jul-04		
number	number	(km)	to Jul-04	to Sept-04	to Jul-04	to Sept-04		
1	1	0.256	0	0	6	17		
2	2	0.968	-1646	15028	-11	26		
2a	3	1.128	-849	2530	0	6		
3	4	1.760	0	10708	0	28		
Зa		2.200	0	7367	0	6		
4	5	2.552	0	1547	0	3		
4a		3.052	0	3274	0	10		
5	6	3.520	-2161	5424	-9	13		
5a		3.960	-4254	3573	-10	3		
6	7	4.312	-2394	4924	-4	25		
6a		4.612	1378	4665	13	6		
7	8	4.976	2638	5751	2	26		
7a		5.316	307	5663	0	8		
8	9	5.688	-1877	2842	-10	8		
8a		6.128	-6509	-7041	-20	-40		
9	10	6.512	-10554	-5522	-35	11		
9a	11	6.920	-10639	-4663	-17	-34		
10	12	7.360	2405	-4176	28	15		
11	13	8.016	4454	-843	-14	-17		
12	14	8.416	-3511	4992	-4	42		
		Total	-33210	56043	-85	160		

Acknowledgement

Efforts in data collection and manipulation by Carl Iverson, Peter Vercoe and David Marven are acknowledged, as is guidance from Peter Blackwood.

Cover Photo: Aerial photograph of Upper Whakatane River near Waikirikiri (rotated 90[°] clockwise).

i

Ohutu S	Stream	n Ch	anges					-				
Mar 95,	mar s	10, Ja	n 97, Jul	1 99, Jun	04	and the h		-	-	Area Chan	an truth	
Section	Dista	nice	-	v	oume cha	Jun 98	93		-	Alea Chan	Jan 39	
number	(km)		93 to 95	95 tu 97	97 to 99	to June 04	to June 04	93 to 95	95 to 97	97 tu 99	to June 04	to June 94
	1	0.19		1.1.1.1	100 235	a children and	Contraction of the local	-3	1	1 7	0	.9
	2	0.71	1396	-395	-2057	-364	-1420	8		2 -1	- 4	5
	3	1.21	-5054	4597	-2560	+1706	-4002	-29	- 21	-10	-6	103
		1.71	-6063	6320	-3875	-747	-4365	5	-	-6	3	+10
-	5	211	3856	-8217	-2159	-1100	7620	15	-46		13	-43
6	8	2.71	7260	-14711	3672	-6013	-9792	10	1 14	17	-11	183
1	Tetal	3.11	611	1217	2813	-3843	790	-6		3	8	-5
	I otal		2000	-11169	4100	1001	21200	0	-14	- 14	36	
Valume (cubic metres)	5000 6 -5000 10000		,					6		7	93 to 95 95 to 97 97 to 99 Jun-99 to J 93 to June 1	une ().4 ().4
						Section N	lumber					
2	12		1	1			1					

Kaituna Riv	er below	Te Mat	tai-Volum	e change	88								
Surveysre	D 32. 1 41	5 50, 50	127,000	1, Apr 00	Voli	uniè Chiato	+ (m ²)		-	Aces	Change i	(m ²)	
	River	Ricoda	Distance	Feb 92 to	Feb 95 to	Jun 97 to	Oct 01 to	Feb 92 to	Feb 92 to	Feb 96 to	Jun 97 to	Oct 01 to	Feb 92 to
Location.	Section	XS No	(km)	Feb 95	Jun 97	Oct 01	Apr 05	Apr 05	Feb 95.	Jun 97	Oct 01	Apr 05	Apr 05
River mouth	ta	27	0.130	0	0	0	0	0	0	-3	19	11	27
	2	2	0.482	0	45247	1214	3614	-1419	-11	-33	-12	i itt	-45
River mouth Diagonal dr Bell Rd B Bell Rd A Kopuersa (Kopuersa) Raparapahoe	3	3	1.005	349	-14297	-4636	5152	-13432	12	-21	-6	10	-6
	4	4	1.528	2267	6795	-3882	2325	-6005	3	-4	.9	0	-16
	5	5	2.011	-617	-2334	-1868	778	-4003	1	-5	1	- 4	1
Diagonal dr.	6	6	2.497	3086	-1893	-868	114	439	.12	-2	-6	i (d)	2
Bell Rd B Bell Rd A Kopuerra \	7	7	3.017	952	-39	-2053	-115	-1255	-9	3	-3	3	-6
	8	8	3.500	-3611	-4839	1887	3195	-3268	-6	-23	11	11	7
	9		4.023	-2266	-6613	4311	4157	590	-2	1	6	- 6	10
	10	10	4.506	-1930	8267	-4871	2135	3601	-6	33	-36	6 SA	5
	11	11	5.029	-3807	8045	-4643	15273	14868	-9		8	56	52
Bell Rd B	12	12	5.507	3439	-283	15843	21994	40993	- 24	1	-58	38	121
Bell Rd A	13	13	6.018	6700	5668	47262	10009	64639	1	21	107	2	133
Kopuarna \	14	14	6.500	2122	15079	40038	2562	59801	6	42	58	10	116
Kopuaroa /	. 15	15	7.000	23302	15253	18462	4181	61198	67	20	15	0	130
	16	16	7.250	14573	4060	5571	1812	26016	29	13	30	i (3)	79
Raparapahoe	17	17	7.600	12565	1673	5113	2663	22014	71	0	11	16	36
314 A 44 A 16	18	18	8 000	17852	692	1008	4751	31296	- t	2	21	E (4	29
Waiari junt d/s	19	19	8 603	-883	5928	13246	3052	21343	- 4	22	32	1	58
20095024F	.20	20	9 000	-117	5229	12181	2879	20172	. 3	0	17	4	- 24
	21	21	9 500	2931	399	6764	2623	12717	9	1	10	8	28
	22	22	10 000	1705	2213	5012	1980	10910	-2	7	10	2	17
	23	- 23	10.650	-149	2446	5154	-681	6870	1	1	9	3	9
	24	24	11.000	2063	343	5094	-1167	6333	. 9	-1	14	- A	21
	- 25	- 25	11.511	2961	3403	-1629	-419	4216	- 4	13	-20	1	- 2
Te Matai		26	12,000	2265	3019	-3073	1714	3925	6	-+1	8	1	- 20
			Total	85753	39377	162638	94680	382447.7	226	84	364	222	896

Voulme change (cubic metres)

Q

-5000

-15000

-20000

-25000

-30000

33

		-	Volu	me Change	(m ²)	Area Change (m ²)						
Section	Distance	1990 to	Oct 93 to	Jun 97 to	Oct 01 to	1990 to	1990 to	Oct 93 to	Jun 97 to	Oct 01 to	1990 to	
number	(km)	Oct 93	Jun 97	Oct 01	May 05	May 05	Oct 93	Jun 97	Oct 01	May 05	May 05	
37	12.82	Contraction in the		nonzeronez en	The second second	and and a second	-9	0	7	3		
30	13.76	-12608	-19051	1699	-617	-29960	-17	-40	-4	- 4	-6	
39	14.21	-6689	-2722	-3856	-1398	-13267	-14	27	-14	-2	1.4	
40	14.65	-3710	1683	-6526	-857	-8553	-6	-18	-21	-2	-4	
41	15.16	5161	-14672	-6299	24	-15810	26	-39	-4	2	-17	
42	15.67	3847	-9665	1283	-146	-4535	-5	-15	11	-3	3	
43	16.09	-1830	-4593	-643	-107	-7066	-4	-9	-14	. 3	-2	
44	16.65	-9552	-1282	-8844	-6819	-19678	-25	- 5	14	-24	-3	
45	17.185	-6063	1409	-3604	-5078	-8258	-6	2	-5	-2	3	
46	17.94	-2277	2769	3583	-4145	4075	1	4	13	-7	1	
47	18.365	-1399	802	2629	-4102	2032	-8	0	1	-15	1	
48	19.155	-4547	-860	-637	-6751	-6044	-3	-2	-3	-2		
49	19.99	-5962	-2776	3307	-3790	-5431	-11	-6	12	-7	4	
51	21.685	-8205	-4219	4245	-5820	-8179	-3	-2	-4	-3	4	
52	22.15	-516	-2049	-632	2	-3197	0	-8	1	3		
.53	22.77	-1861	-2162	896	-630	-3127	-6	1	2	-5		
	Total	-56211	-57388	-13399	-40236	-126998	-90	-100	-36	-66.1	-220	
10000	1			Kaitun	a River A	bove Te	Matai					

Section number

52 53

<u>k</u>t

1998 to Oct 93

Oct 93 to Jun 97

Cot 01 to May 05

Total 1990-2005

