

Department of Soil and Physical Sciences Faculty of Agriculture and Life Sciences

T 64 3 423 0768 PO Box 85084, Lincoln University Lincoln 7647, Christchurch, New Zealand

www.lincoln.ac.nz

Commentary on the "Review of information on Lake Rotorua catchment phosphorus losses and reductions" by Park (2017)

R.W. McDowell

Professor of Soil and Water Quality, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647,

Purpose:

To review material supplied by Park (2017) on "Lake Rotorua catchment phosphorus losses and reductions", with a view to answering the question supplied by A MacCormick (BOPRC): "Is a decrease in anthropogenic load of 10-15 t P/yr achievable?"

Assumption:

That the report of Tempero et al. (2015) outlining the natural load is accurate, and that the range required of anthropogenic load decrease has no uncertainty associate with it.

Commentary:

Prior work (McDowell 2014) has identified that across 14 catchments nationally, the focus of mitigations in critical source areas (CSAs) decreased P losses by about 40% costing < 2% farm EBIT compared to "blanket" approaches that did not target CSAs and reduced P losses by 48%, but cost 12% of farm EBIT.

Additional work (McDowell et al. 2017) compared the application of mitigations focused on N or P applied on the basis of cost-effectiveness only and showed that substantial reduction in P losses were unlikely if mitigation only focused on N.

However, a second approach considered cost-effectiveness and the ease of implementation when applying mitigations. This "pragmatic" approach advocated for more P-effective mitigations earlier in the schema and resulted in N and P loss mitigation that was quick and cheap.

There are over 22 different strategies available to mitigate P losses. Many of these can be captured by manipulating an Overseer file for a farm block, but not all. More importantly, as Overseer is not spatially explicit, it will not naturally capture P losses associated with CSAs. Overseer files can be set-up to capture CSAs by more CSA-specific blocking, but this is seldom done as blocks typically focus on N-relevant (and somewhat P-irrelevant) management issues such as different stocking rates.

A list of P mitigation strategies was supplied in 2010 and has been updated in various publications; e.g. as published on the Ministry for the Environment's website (McDowell et al. 2013). These mitigations have been applied in numerous publications, nationally and on a regional basis. Using recently developed spatially-explicit software that uses management data from Overseer, (McDowell et al. 2015) showed 20-80% of the anthropogenic load was mitigated; one of the modelled farms was in the Rotorua area. This concurs with the mitigation potential estimated by Park (2017).

However, it should be noted that catchment-wide this will only be achieved with competent and full implementation of the mitigations (viz. good management plans) listed. I note that this requires an assessment of CSAs of a farm, the selection of mitigations suitable for those CSAs and follow-up to ensure that the mitigations have been put in place. This falls within the proposed PC10 provisions for a <u>Nutrient Management Plan</u> and not a Nitrogen Management Plan.

Recommendations:

I recommend the council:

- Develop a set of standards for an acceptable NMP that contains a spatially-explicit farm map, and plan that identifies and deals with CSAs, and that the mitigations are logged, checked and revised on a 5-yearly basis.
- Do not use the mitigations listed by Beef and Lamb NZ (B&LNZ) without in-depth review. Many of the B&LNZ practices listed in Appendix II of Park (2017) of "high water quality benefit" for P may not be so. The data appears to be qualitative and not quantitative. I dispute the categorical effectiveness for P mitigation listed. They are intended to be "rules of thumb". Such an emphasis on anecdotal evidence could result in ineffective strategies being promoted over those that are more suited for a farm. For example, if a drystock enterprise had soils only slightly above the agronomic optimum, they would be credited with > 50% P mitigation, whereas only a few percentage decreases would likely be achieved.
- Examine the catchment yield of P from production forestry. Note that I can send the Council calculated loads for all water quality sites currently measured by Regional Authorities and NIWA. If the 95% confidence interval of P losses for the central North Island under forestry fits within the 0.12 kg P/ha.yr listed by Park (2017) I would trust the assumption that the estimated decrease in P losses associated with a landuse change from pasture to forestry would result in the P decrease estimated (in the long-term).

References:

- McDowell, R.W. (2014) Estimating the mitigation of anthropogenic loss of phosphorus in New Zealand grassland catchments. Science of the Total Environment 468-469, 1178-1186.
- McDowell, R.W., Monaghan, R.M., Gougherty, W., Gourley, C.J.P., Vibart, R., Shepherd, M. (2017) Balancing water quality threats from nutrients and production in Australian and New Zealand dairy farms under low profit margins. Animal Production Science 57: In press.
- McDowell, R.W., Peyroux, G., Yoswara, H., Brown, M.A., Cox, N., Smale, P., Wheeler, D., Watkins, N., Smith, C., Monaghan, R., Muirhead, R., Catto, W. and Risk, J. (2015)
 MitAgatorTM: a tool to estimate and mitigate the loss of contaminants from land to water. Transactions of the ASABE 59(2), 537-543.
- McDowell, R.W., Wilcock, R.J. and Hamilton, D. (2013) Assessment of Strategies to Mitigate the Impact or Loss of Contaminants from Agricultural Land to Fresh Waters, Ministry for the Environment, Wellington, New Zealand.
- Park, S. (2017) Review of information on Lake Rotorus catchment phosphorus losses and reductions. 24 February, 2017, Landconnect Ltd.
- Tempero, G., McBride, C., Abell, J., Hamilton, D. (2015) Anthropogenic phosphorus loads to Lake Rotorua. Available at: <u>http://www.rotorualakes.co.nz/vdb/document/1409</u>.

