Reduction of Nitrogen and Phosphorus flows into Lake Rotorua

• I will cover today:

Modern fertiliser practice; focus on soluble nutrients How P and N cycle in the soil

Soil biological function. Impact of soluble nutrients.

New bio-technologies that grow crops and pastures with reduced need for soluble nutrients.

Should we refocus fertiliser spend and emphasise efficiency more than cost per kg of N,P,K & S?

- Farmers can reduce N and P loss from their farms by reducing the inputs of soluble P and N fertilisers but that often comes with a reduction in productivity.
- Improvements in fertiliser nutrient efficiency using modern technologies are increasingly common globally.
- The NZ the fertiliser industry remains focused on Single Superphosphate and Urea
- We could place more emphasis on efficient use of the nutrients
 - Nutrient cycling
 - Methods of plant uptake
 - Reduced losses from soil to water

Regular applications of soluble nutrients on pasture. Typical pasture soil profile.

- Shallow root system
- Very high levels of undigested plant material in top 75 mm
- Only a fraction of the soil profile is being used for nutrient and moisture transaction by the pasture.

Same soil, climate and pasture. Different fertiliser approach.

- Less thatchiness
- Deep root systems
- Deeper darker topsoil or "A" horizon
- More porosity. Air and water movement is enhanced.
- Less nutrient loss.
- More nutrient storage (soil organic matter and microbial biomass)

leached TOTAL

22

Fungi and bacteria associated with the roots facilitate P uptake for most plants. As well as water and other nutrients and secondary metabolites.

Clover can grow deep roots with deep nodules.

Products to enhance the soil biological function $$_{\mbox{\tiny HC=0}}$$

- Humic Compounds
- Inoculums
- Other Biostimulants.

OH

Humic Compounds

- Chelate soluble fertiliser nutrients
 like N and P
- Provide nutrition for microbes
- Stimulate plant root growth
- Improve efficiency with which fertiliser nutrients are used
- Increase P availability in soil
- Detoxify soils.
- Reduce Al and Fe activity in soil

KEY MICROBIAL ACTIONS

Pasture production (Kg DM/Ha) from plots receiving three different fertiliser treatments

Sorghum Silage harvested (Kg DM/Ha) with or without SumaGrow application.

Rapid N. Omnia's foliar Nitrogen product.

Ag Research Ruakura. Compared Rapid N (UAN and Humic acid) with Urea

KgDM/kgN

Nutrient efficient fertiliser results on a farm scale

COMPARISON OF FERTILISER APPROACHES	Farm using Humic acid with all fertiliser. Insoluble P. Foliar N,P,K most of the year	Farms with standard fertiliser approach. Soluble P and all N as solids.
Pasture Harvest (Tonne DM/Ha/Year)	17.2	17.0
Kg N applied/Ha/year	115	250
Kg P applied/Ha/year	20	45
Kg MS/Ha	1600	1600
OVERSEER kg N Loss/Ha/year	32	50
OVERSEER kg P Loss/Ha/year	0.4	0.8