

# **Bay of Plenty**

# **Regional Air Emission Inventory**

## FINAL REPORT

- Version 2
- 20/08/2003



## **Bay of Plenty**

# **Regional Air Emission Inventory**

FINAL REPORT

- Version 2
- **20/08/2003**

Sinclair Knight Merz Level 12, Mayfair House 54 The Terrace PO Box 10-283 Wellington New Zealand Tel: +64 4 473 4265 Fax: +64 4 473 3369 Web: www.skmconsulting.com

COPYRIGHT: The concepts and information contained in this document are the property of Sinclair Knight Merz Limited. Use or copying of this document in whole or in part without the written permission of Sinclair Knight Merz constitutes an infringement of copyright.



## **Executive Summary**

### Scope

This 2001 air emission inventory was prepared for the Bay of Plenty Regional Council (Environment Bay of Plenty) to update the 1996 inventory (OPUS 1996).

This inventory estimates emissions for sources included in the first inventory and has updated the 1996 estimates using new methodologies and factors where needed. The scope of the inventory has been significantly increased, including a larger number of sources and more contaminants.

The 1996 inventory focused on particulate matter, nitrogen oxides, carbon monoxide and sulphur dioxide. Additional contaminants in this inventory are fine particulate matter, specific volatile organic compounds and greenhouse gases. The additional emission sources are quarries, abrasive blasting, backyard burning, lawn mowing, landfills, wastewater treatment and biogenic emissions from vegetation.

Emissions estimation methods were based on the latest available techniques, including the use of New Zealand developed emission models for road and rail transport, which are expected to have improved the estimates from the first inventory.

### Results

The total annual emissions for common contaminants and hazardous air pollutants are presented in the two tables below.

| Source Cotogomy               | Tonnes / Year    |                   |       |                 |                 |  |  |  |
|-------------------------------|------------------|-------------------|-------|-----------------|-----------------|--|--|--|
| Source Category               | PM <sub>10</sub> | PM <sub>2.5</sub> | со    | NO <sub>x</sub> | SO <sub>2</sub> |  |  |  |
| Transport                     | 441              | 313               | 13412 | 6282            | 891             |  |  |  |
| Domestic                      | 693              | 646               | 5573  | 96              | 29              |  |  |  |
| Industrial                    | 1369             | 914               | 4050  | 543             | 932             |  |  |  |
| Biogenic                      | NA               | NA                | NA    | 1301            | NA              |  |  |  |
| Agricultural field<br>burning | NA               | NA                | 395   | 21              | NA              |  |  |  |
| Total                         | 2503             | 1873              | 23430 | 8243            | 1852            |  |  |  |

### Total Annual Emissions for Primary Contaminants (2001)

Transport sources dominate the emissions of carbon monoxide (57%) and nitrogen oxides (76%). Industrial sources dominate the annual emissions of fine particles at 54%. During the wintertime industry contributes 39% while domestic source increase to 49% as a result of domestic home

heating. Sulphur dioxide is dominated by transport emissions from shipping and two large industrial sources.

| Source Category         | Tonnes / Year |                  |         |                  |                  |  |  |
|-------------------------|---------------|------------------|---------|------------------|------------------|--|--|
| Source Category         | VOC           | Acetaldehyde     | Benzene | Formaldehyde     | 1-3 Butadiene    |  |  |
| Transport               | 2089          | 60               | 117     | 63               | 13               |  |  |
| Domestic and commercial | 3761          | 103 <sup>#</sup> | 567     | 206 <sup>#</sup> | 310 <sup>#</sup> |  |  |
| Industrial (combustion) | 95            | 0.001            | 12      | 2                | NA               |  |  |
| Biogenic/waste          | 41557         | NA               | 0.06    | NA               | NA               |  |  |
| Total                   | 47502         | 163              | 696     | 271              | 323              |  |  |

## Total Annual Emissions for Hazardous Air Pollutants (2001)

\*includes industrial use of solvents

<sup>#</sup> lawn mowing only

Domestic emissions dominate hazardous air pollutants emissions despite there being data gaps for home heating and backyard burning.

Estimates of emissions of greenhouse gases and dioxins were made, but a lack of fuel data on which to base estimates for some sources, and variances in methodology means that any comparison with the respective national inventories would need to be made with caution.

The table below gives a comparison of 2001 and 1996 emission for the common air contaminants. This is based on backcasting i.e. using the same assessment methods used to estimate 2001 emissions.

|           |                | Tonnes pollutant per year |       |                 |      |      |      |      |      |
|-----------|----------------|---------------------------|-------|-----------------|------|------|------|------|------|
| Sector    | Source         | СО                        |       | SO <sub>2</sub> |      | NOx  |      | РМ   |      |
|           |                | 1996                      | 2001  | 1996            | 2001 | 1996 | 2001 | 1996 | 2001 |
| Transport | Shipping       | 61                        | 68    | 419             | 477  | 343  | 390  | 52   | 58   |
|           | Rail           | 30                        | 52    | 14.6            | 28.4 | 310  | 526  | 8    | 13   |
|           | Aircraft       | 89                        | 103   | 0.2             | 0.2  | 301  | 363  | 55   | 66   |
|           | Motor vehicles | 14561                     | 13190 | 429             | 477  | 5209 | 4916 | 360  | 305  |
| Industry  | Gas            | 103                       | 107   | 0               | 0.3  | 61   | 63   | 9    | 10   |
|           | Coal           | 27                        | 15    | 43              | 24   | 34   | 19   | 28   | 16   |
|           | Wood           | 1374                      | 3922  | 152             | 433  | 152  | 433  | 657  | 1874 |
| Total     |                | 16245                     | 17457 | 1058            | 1440 | 6410 | 6710 | 1169 | 2342 |

## Backcast Comparison 1996 and 2001

The domestic and agriculture sectors, which were included in the 1996 inventory, could not be backcast. This was because 2001 domestic heating emissions were extrapolated on a population basis from a home heating survey for Auckland. It was also not possible to compare the original 1996 estimates for this sector because unlike 1996, fuel sales data was not available for 2001. Domestic emissions are however, likely to have increased due to population growth. Available data indicates that coal use is decreasing and gas use is increasing.

Agricultural and forestry burn off could not be assessed for 2001 because activity data could not be sourced. Anecdotally, the reason given for the lack of data is that burnoff activity has much reduced and/or is no longer carried out. The data used for pesticides in 2001 gave estimates an order of magnitude higher than 1996. This was because the 2001 estimates were from a more comprehensive survey of pesticide use. It is likely, however, that pesticide use in the region has actually decreased due to an increase in organic production.

The total annual emissions from the transport and industry sectors as backcast for 1996 are presented in the figures below and compared to 2001.



## Total Annual Emissions for Transport 1996 and 2001 (Tonnes/Year)

All transport activities in the region have increased. Motor vehicle emissions are the major source in the transport sector and activity increased by 11%. Emission estimates however, show little change, due to lower emission factors obtained from the Ministry of Transport's vehicle emissions model for 2001 as compared to 1996. The model adjusts the emission factors each year to allow for a predicted improvement in motor vehicle emission technology, but this may or may not be happening in reality.





## Total Annual Emissions for Industrial Combustion 1996 and 2001 (Tonnes/Year)

Increased industrial woodwaste combustion is the principle cause of the increase in emission estimates for the industrial sector.

## **Key Findings**

- Agricultural and forestry burnoffs, which were previously identified as contributing 12% of
  particulate matter are no longer considered to be a significant source because of a reduction in
  this practice.
- The area of forestry in the Region has increased and large-scale industrial activity in relation to timber processing remains significant.
- Natural gas remains the primary source of energy for industrial activities in the Region and consumption has increased. Industrial woodwaste combustion has also increased and this has increased the emission estimates for fine particles.
- Transport activity in the Region has increased due to population and economic growth, however, this has not been sufficient to cause any significant increase in emissions from the transport sector.

## Recommendations

This inventory was more complex than the first inventory due to changes in scope, changes in methods and the need to backcast emissions. Data gaps affect the reliability of the inventory in the key area of domestic and small commercial sources; and in the ability to estimate dioxin and greenhouse gas emissions. It is recommended that, prior to undertaking the next inventory, inventory data needs and collection methodologies be independently reviewed, considering whether the inventory meets councils needs. Particular areas to consider are:

- Methods for estimating domestic sources and whether regional activity data should be gathered such as from fuel surveys, and/or domestic and small commercial surveys
- Collection and management of industrial activity and emission measurement data
- The value of including a range of hazardous air pollutants
- The costs and benefits of methods available to estimate geothermal emissions

Environment Bay of Plenty should consider developing an ongoing inventory data collection programme to assist updating the inventory i.e. it should not be seen as a once in every five year exercise.

In addition, any further changes to methods and increases in scope should be reviewed in order to facilitate updating the inventory and backcasting consistent with policy needs.



## Contents

| 1. | Introduction                                    | 1  |
|----|-------------------------------------------------|----|
|    | 1.1 Purpose                                     | 1  |
|    | 1.2 Scope                                       | 1  |
|    | 1.3 Characteristics of the Bay of Plenty Region | 2  |
|    | 1.3.1 Population and Dwellings                  | 2  |
|    | 1.3.2 Dominant Land Uses                        | 3  |
|    | 1.3.3 Infrastructure                            | 4  |
| 2. | Air Contaminants Sources and Effects            | 5  |
| 3. | Methodology and Data Sources                    | 7  |
|    | 3.1 Data Collection Criteria                    | 7  |
|    | 3.2 Data Sources                                | 7  |
|    | 3.2.1 Industrial                                | 8  |
|    | 3.2.2 Transport                                 | 9  |
|    | 3.2.2.1 Rail                                    | 9  |
|    | 3.2.2.2 Road                                    | 10 |
|    | 3.2.2.3 Shipping                                | 12 |
|    | 3.2.2.4 Aircraft                                | 13 |
|    | 3.2.3 Waste                                     | 14 |
|    | 3.2.4 Domestic and Small Commercial Sources     | 15 |
|    | 3.2.4.1 Domestic Home Heating                   | 15 |
|    | 3.2.4.2 Backyard Burning                        | 17 |
|    | 3.2.4.3 Lawn Mowing                             | 18 |
|    | 3.2.4.4 Solvent Use                             | 18 |
|    | 3.2.5 Agriculture and Forestry                  | 19 |
|    | 3.2.5.1 Livestock and Crops                     | 19 |
|    | 3.2.5.2 Pesticides                              | 21 |
|    | 3.2.5.3 Fertiliser                              | 22 |
|    | 3.2.5.4 Pollen                                  | 22 |
|    | 3.2.6 Geothermal Use and H <sub>2</sub> S       | 22 |
|    | 3.2.7 Biogenic Emissions                        | 23 |
| 4. | Uncertainty                                     | 25 |
| 5. | Estimated Emissions 2001                        | 28 |
|    | 5.1 Transportation                              | 28 |
|    | 5.1.1 Shipping                                  | 28 |
|    | 5.1.2 Motor Vehicles                            | 28 |
|    | 5.1.3 Rail                                      | 30 |



|     | 5.1.4 | Aircraft                                                 | 30           |
|-----|-------|----------------------------------------------------------|--------------|
|     | 5.2   | Industrial Sources                                       | 30           |
|     | 5.3   | Domestic and Commercial Sources                          | 34           |
|     | 5.4   | Waste                                                    | 35           |
|     | 5.5   | Biogenic Emissions                                       | 35           |
|     | 5.6   | Agriculture and Forestry                                 | 36           |
|     | 5.6.1 | Livestock and Agriculture                                | 36           |
|     | 5.6.2 | Pollen                                                   | 36           |
|     | 5.6.3 | Pesticides and Fertiliser                                | 37           |
|     | 5.6.4 | Agricultural Burning                                     | 37           |
|     | 5.7   | Geothermal                                               | 38           |
| 6.  | Data  | Summaries and Analysis                                   | 39           |
|     | 6.1   | Primary Contaminants                                     | 39           |
|     | 6.2   | Hazardous Air Pollutants                                 | 41           |
|     | 6.3   | Dioxin Emissions                                         | 42           |
|     | 6.4   | Greenhouse Gases                                         | 42           |
|     | 6.5   | Urban Area Contributions                                 | 44           |
| 7.  | Com   | parison with 1996                                        | 47           |
|     | 7.1   | Transport                                                | 47           |
|     | 7.1.1 | Shipping                                                 | 47           |
|     | 7.1.2 | Rail                                                     | 48           |
|     | 7.1.3 | Aircraft                                                 | 49           |
|     | 7.1.4 | Motor Vehicles                                           | 50           |
|     | 7.2   | Domestic Heating Emissions                               | 51           |
|     | 7.3   | Industry                                                 | 52           |
|     | 7.4   | Agriculture and Forestry                                 | 53           |
| 8.  | Sum   | mary of Data Gaps and Limitations                        | 54           |
| 9.  | Refe  | rences                                                   | 56           |
| Арр | endix | A Industrial Sources                                     | 59           |
| Арр | endix | B Pollutant Summaries by Source, District and Urban Area | <b>3asis</b> |

63



## List of Tables

|   | Table 1-1 Contaminants for the 2001 Air Emission Inventory                      | 2  |
|---|---------------------------------------------------------------------------------|----|
|   | Table 1-2 Bay of Plenty Population 1996 – 2001                                  | 2  |
|   | Table 1-3 Dwellings Per District 1996 - 2001                                    | 3  |
|   | Table 2-1 Comments on Contaminants Included                                     | 5  |
|   | Table 3-1 EET Factors for Rail Transport                                        | 10 |
|   | Table 3-2 Motor Vehicle Emission Factors From VFECs and Nelson (2001)           | 11 |
|   | Table 3-3 Speciation factors for Motor Vehicles (weight % of VOC)               | 11 |
|   | Table 3-4 EET Emission Factors for Commercial Shipping                          | 12 |
|   | Table 3-5 : EET VOC and PM Speciation for Commercial Shipping Exhaust           | 12 |
|   | Table 3-6 Regional Aircraft LTOs for 1996 and 2001                              | 13 |
|   | Table 3-7 EET Speciation Factors for Aircraft                                   | 13 |
|   | Table 3-8 Speciated Landfill Gas Constituents (US EPA defaults)                 | 15 |
|   | Table 3-9 Fuel Type Used to Heat Dwellings Bay of Plenty 1996 and 2001          | 16 |
|   | Table 3-10 Emission Factors for Domestic Heating from ARC (Environet Ltd, 2001) | 16 |
|   | Table 3-11 Emission Factors for Backyard Burning                                | 17 |
|   | Table 3-12 Dioxin Emission Factors for Backyard Burning                         | 17 |
|   | Table 3-13 Solvent and Other Product Use (NZGHGI 2002)                          | 19 |
|   | Table 3-14 Land Cover Class for Bay of Plenty (1996 / 97)                       | 20 |
|   | Table 3-15 Nutrient Sales Waikato / Bay Of Plenty / King Country 2001-2002      | 22 |
|   | Table 3-16 $NO_x$ Emission Factors for Different Land Uses                      | 23 |
| • | Table 3-17 VOC Emissions for Different Land Uses                                | 24 |
|   | Table 4-1 Uncertainty in Activity Statistics for Inventory Sources              | 26 |
|   | Table 5-1 Emissions for Commercial Shipping (Tauranga)                          | 28 |
|   | Table 5-2 Annual Emissions from Motor Vehicles                                  | 29 |



|        | Table 5-3 : Annual Emissions from Rail Transport                                         | 29       |
|--------|------------------------------------------------------------------------------------------|----------|
|        | Table 5-4 Activity Data and Emissions from Aircraft                                      | 31       |
| •      | Table 5-5 Annual Emissions from Industry                                                 | 31       |
| •      | Table 5-6 Annual Emissions from Backyard Burning                                         | 32       |
| •      | Table 5-7 Annual Emissions from Domestic Heating                                         | 32       |
| •      | Table 5-8 Annual Emissions from Lawn Mowing                                              | 33       |
| •      | Table 5-9 Domestic and Commercial Solvent Emissions                                      | 34       |
| •      | Table 5-10 GHG Emissions from Municipal Landfills and Waste Water Treatment Plan (WWTPs) | ts<br>35 |
| •      | Table 5-11 Agricultural Source GHG Emissions for Bay of Plenty                           | 36       |
|        | Table 5-12 Pollen from Exotic Forestry                                                   | 36       |
|        | Table 5-13 Annual Pesticide Use Bay of Plenty                                            | 37       |
|        | Table 5-14 Agricultural Burning Responses                                                | 38       |
| •      | Table 6-1 Total Annual Emissions for Primary Contaminants 2001                           | 39       |
| •      | Table 6-2 Total Annual Emissions for Hazardous Air Pollutants 2001                       | 42       |
| •      | Table 6-3 Total Annual Dioxin Emissions                                                  | 42       |
|        | Table 6-4 Total Annual CO <sub>2</sub> Emissions (2001)                                  | 43       |
|        | Table 6-5 Total Annual N <sub>2</sub> O and Methane Emissions (Tonnes/year)              | 43       |
| •      | Table 7-1 Commercial Shipping Backcast Results                                           | 47       |
| •      | Table 7-2 Train Movements 1996, 1998 and 2001                                            | 48       |
|        | Table 7-3 Emissions Estimates from the MoT Rail Model for 1998 and 2001                  | 48       |
| •      | Table 7-4 Emission Estimates from Rail OPUS (1997)                                       | 49       |
|        | Table 7-5 Fuel Use Estimates for Rail 1996, 1998 and 2001                                | 49       |
|        | Table 7-6 Total Aircraft LTOs for 1996 and 2001                                          | 50       |
| •      | Table 7-7 Total Aircraft Emissions 1996 and 2001                                         | 50       |
|        | Table 7-8 VKT data per District 1996 and 2001                                            | 51       |
| •      | Table 7-9 Total Motor Vehicle Emission 1996 and 2001                                     | 51       |
| SINCLA | AIR KNIGHT MERZ                                                                          |          |

| Table 7-10 Annual Emissions from Domestic Heating 1996 and 2001      | 52 |
|----------------------------------------------------------------------|----|
| Table 7-11 Industrial fuel consumption back-calculated 1996 and 2001 | 52 |
| Table 7-12 Total Annual Emissions from Industry 1996 and 2001        | 53 |
| Table A-1 Gas Fired Industrial Plant                                 | 60 |
| Table A-2 Wood Fired Industrial Plant                                | 61 |
| Table A-3 Coal Fired Industrial Plant and Other                      | 62 |
| Table B-1 PM <sub>10</sub> Winter (Tonnes/Year)                      | 64 |
| Table B-2 PM <sub>10</sub> (Tonnes/Year)                             | 65 |
| Table B-3 PM <sub>10</sub> (Tonnes/Year)                             | 66 |
| Table B-4 Carbon monoxide (Tonnes/Year)                              | 67 |
| Table B-5 CO <sub>2</sub> (Tonnes/Year)                              | 68 |
| Table B-6 Dioxin (mg I-TEQ/Year)                                     | 69 |
| Table B-7 NO <sub>X</sub> (Tonnes/Year)                              | 70 |
| Table B-8 Sulphur dioxide (Tonnes/Year)                              | 71 |
| Table B-9 Volatile Organic Compounds (Tonnes/Year)                   | 72 |
| Table B-10 Acetaldehyde (Tonnes/Year)                                | 73 |
| Table B-11 Benzene (Tonnes/Year)                                     | 74 |
| Table B-12 Formaldehyde (Tonnes/Year)                                | 75 |
| Table B-13 1-3 Butadiene (Tonnes/Year)                               | 76 |

## List of Figures

|   | Figure 6-1 Annual and Wintertime PM <sub>10</sub>             | 39 |
|---|---------------------------------------------------------------|----|
| • | Figure 6-2 Annual PM <sub>2.5</sub> and CO Sources            | 40 |
| • | Figure 6-3 Annual NO <sub>x</sub> and SO <sub>2</sub> Sources | 41 |
| • | Figure 6-4 Annual CO <sub>2</sub> Source Contributions        | 43 |
| • | Figure 6-5 Urban Carbon Monoxide contribution                 | 44 |
| • | Figure 6-6 Annual Urban PM <sub>10</sub> Contribution         | 45 |
| • | Figure 6-7 Urban Nitrogen Oxide Contribution                  | 45 |
|   | Figure 6-8 Urban Sulphur Dioxide Contribution                 | 46 |



## **Document history and status**

| Revision  | Date issued    | Reviewed by | Approved by | Date approved | Revision type |
|-----------|----------------|-------------|-------------|---------------|---------------|
| Version 1 | 13 August 2003 | DAR         | PEM         | 11/8/03       | Final         |
| Version 2 | 20 August 2003 | DAR         | PEM         | 20/8/03       | Final         |
|           |                |             |             |               |               |
|           |                |             |             |               |               |
|           |                |             |             |               |               |
|           |                |             |             |               |               |
|           |                |             |             |               |               |
|           |                |             |             |               |               |
|           |                |             |             |               |               |

## **Distribution of copies**

| Revision  | Сору по | Quantity | Issued to                 |
|-----------|---------|----------|---------------------------|
| Version 1 | 1       | 2        | Environment Bay of Plenty |
| Version 2 | 1       | 2        | Environment Bay of Plenty |
|           |         |          |                           |
|           |         |          |                           |
|           |         |          |                           |
|           |         |          |                           |
|           |         |          |                           |
|           |         |          |                           |
|           |         |          |                           |

| Printed:              | 20 August 2003                                |
|-----------------------|-----------------------------------------------|
| Last saved:           | 20 August 2003 11:36                          |
| File name:            | G:\data\Project\Wrnv\wr01503\WR01503W0005.doc |
| Author:               | Deborah Ryan                                  |
| Project manager:      | Deborah Ryan                                  |
| Name of organisation: | Environment Bay of Plenty                     |
| Name of project:      | Regional Air Emission Inventory               |
| Name of document:     | Final Report                                  |
| Document version:     | Version 2                                     |
| Project number:       | WR01503                                       |



## 1. Introduction

## 1.1 Purpose

This is an updated air emission inventory for the Bay of Plenty Region. It builds on the 1996 inventory undertaken by OPUS International Consultants (OPUS 1997).

Emission inventories are useful to:

- quantify sources;
- review and identify policy options;
- design or review ambient monitoring programs; and
- project future emissions.

The *Proposed Bay of Plenty Regional Air Plan* (July 2000) has been amended in accordance with its Council's decisions on submissions. The Plan identifies that the emission inventory is to be updated about every 5 years or as appropriate. It is to be used with other information as a tool to monitor the effectiveness of the Plan. Updating an emission inventory every 3-5 years is also recommended in the Ministry for the Environment's *Good Practice Guide for Preparing Emission Inventories* (2001).

This inventory is to be used for evaluating trends relating to key issues in the Region such as particulate matter emissions and pesticide use, and to evaluate ambient monitoring programmes.

## 1.2 Scope

The reference year for this inventory is 2001. Data as close as possible to the study period has been used when available.

This inventory has been compiled by source type and the spatial distribution presented on a districtwide and urban area basis to allow comparison with the 1996 inventory. Developments since 1996 have meant that this inventory has used different estimation methodologies and included some different sources so care is needed in making comparisons.

Abrasive blasting, quarries, small combustion engines (lawnmowers), wastewater processes, landfills, domestic rubbish fires, agricultural activities and biogenic emissions are sources that are additional to the previous study.

The updated inventory also includes additional contaminants. Contaminants included in the updated inventory are summarised in Table 1-1.



## Table 1-1 Contaminants for the 2001 Air Emission Inventory

| Particulate matter (PM <sub>10</sub> & PM <sub>2.5</sub> ) | Hydrogen sulphide |
|------------------------------------------------------------|-------------------|
| Carbon monoxide                                            | Dioxins           |
| Carbon dioxide                                             | Agrichemicals     |
| Sulphur dioxide                                            | Pollen            |
| Oxides of nitrogen                                         | Methane           |
| Selected volatile organic compounds (VOCs)                 |                   |

## 1.3 Characteristics of the Bay of Plenty Region

## 1.3.1 Population and Dwellings

The Bay of Plenty Region has about 6.3% of New Zealand's usually resident population with 239,352 people on census night 2001.

Between 1996 and 2001 the Region's population increased overall by 6.7%.

Trends in population for the districts within the Bay of Plenty are summarised in Table 1-2. Just over half of the districts experienced a decrease in population, while Tauranga had 17% population growth and Western Bay of Plenty had 9.3%.

## ■ Table 1-2 Bay of Plenty Population 1996 – 2001

| Territorial Authority             | 1996 Census Usually<br>Resident Population | 2001 Census Usually<br>Resident Population | Increase or Decrease (-)<br>1996-2001 |         |  |
|-----------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------|---------|--|
|                                   | Count                                      | Count                                      | Number                                | Percent |  |
| Taupo District (part)             | 210                                        | 183                                        | -27                                   | -12.9   |  |
| Western Bay of<br>Plenty District | 34,968                                     | 38,232                                     | 3,264                                 | 9.3     |  |
| Tauranga District                 | 77,778                                     | 90,906                                     | 13,128                                | 16.9    |  |
| Rotorua District (part)           | 61,035                                     | 61,041                                     | 6                                     | 0.0     |  |
| Whakatane District                | 33,126                                     | 32,814                                     | -312                                  | -0.9    |  |
| Kawerau District                  | 7,830                                      | 6,975                                      | -855                                  | -10.9   |  |
| Opotiki District                  | 9,375                                      | 9,201                                      | -174                                  | -1.9    |  |
| Region                            | 224,322                                    | 239,352                                    | 15,030                                | 6.7     |  |

Population growth in Tauranga and the Western Bay of Plenty is reflected in an increase in the number of dwellings as shown in Table 1-3.

| Territorial Authority          | 1996 Occupied | 2001<br>Occupied | Increase or Decrease (-) 1996-2001 |         |  |
|--------------------------------|---------------|------------------|------------------------------------|---------|--|
|                                | Dwellings     | Dwellings        | Number                             | Percent |  |
| Taupo District (part)          | 69            | 69               | -                                  | -       |  |
| Western Bay of Plenty District | 12,615        | 14,082           | 1,467                              | 11.6    |  |
| Tauranga District              | 29,745        | 35,487           | 5,742                              | 19.3    |  |
| Rotorua District (part)        | 20,934        | 21,654           | 720                                | 3.4     |  |
| Whakatane District             | 11,190        | 11,538           | 348                                | 3.1     |  |
| Kawerau District               | 2,433         | 2,343            | -90                                | -3.7    |  |
| Opotiki District               | 3,183         | 3,237            | 54                                 | 1.7     |  |
| Region                         | 80,169        | 88,410           | 8,241                              | 10.3    |  |

## Table 1-3 Dwellings Per District 1996 - 2001

## 1.3.2 Dominant Land Uses

The Bay of Plenty has a total land area of over 1.2 million hectares. The only comprehensive data available on land cover class at the time of writing was for 1996 from Statistics New Zealand reproduced in Table 3-14. More recent land use statistics have been used in calculations where available.

The Region supplied more than 75% of New Zealand's total kiwifruit production and produces tangelos, nashi, avocado, feijoas, tamarillos and passionfruit. In total, 9,700 hectares were dedicated to fruit production in 1996. Exotic forestry covered an estimated 267,000 hectares or 21 percent of the land area. Farming and forestry occupied about half the total land area. A substantial portion of farming land in the Region is pastoral including beef, dairy, sheep, goats and deer farms.

The Bay of Plenty includes the most active geothermal fields in New Zealand, and New Zealand's most active volcano, which is White Island.

Distinctive factors affecting air quality in the Bay of Plenty Region, as identified from the 1996 emission inventory, include large forestry plantations and high diesel fuel use due to heavy vehicle movements. The impact of forestry on air quality has decreased with a decrease in forestry burnoffs, however, ancillary forestry activities are still significant.



## 1.3.3 Infrastructure

The Region has about 4,400 kilometres of road. Around two thirds of these are rural roads, including those linking the forestry areas with the Port of Tauranga. There are three domestic airports at Rotorua, Tauranga and Whakatane and a rail network that connects Tauranga and Whakatane to the Waikato Region and the main trunk railway line. There is one main port at Tauranga. The Region has 15 municipal wastewater treatment systems and 5 landfills in operation.



## 2. Air Contaminants Sources and Effects

The contaminants included in the emission inventory in 1996 were particulate matter, sulphur dioxide, carbon monoxide, the oxides of nitrogen, and hydrogen sulphide. These are commonly referred to as the primary or indicator air pollutants, and are produced by a wide variety of sources throughout the Region. Dioxins, agrichemicals, and pollens were also included, because these have been identified as possible issues for the Region.

Carbon dioxide, methane, selected volatile organic compounds (VOC), and fine particles ( $PM_{10}$ ,  $PM_{2.5}$ ) have been added to this inventory. Comments on each of the contaminants for inclusion in the inventory are provided in Table 2-1.

| Contaminant                | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Particulate matter<br>(PM) | PM includes dust, smoke, aerosols, haze and fallout. Airborne PM arises from many sources including combustion processes (especially coal and wood burning), motor vehicle emissions, vehicle movements on sealed or unsealed roads, agricultural activities, quarries, road and building construction, as well as numerous industrial operations. Natural sources of PM include volcanoes, sea spray, plant and animal matter (e.g. pollens and fungal spores) and wind blown dust and dirt. PM can cause nuisance effects when it settles on surfaces such as cars, window ledges, washing, etc. |
| PM <sub>10</sub>           | Particles below 10 microns or $PM_{10}$ can affect visual air quality and can have respiratory effects because they are small enough to be inhaled. $PM_{10}$ has been of increasing concern with no threshold level for effects known because it has been shown to endanger human health. New Zealand ambient air quality guidelines address $PM_{10}$ and it is now included as part of many regional ambient air monitoring programmes. $PM_{10}$ can be estimated relatively easily with emission factors and particle size distribution data.                                                 |
| PM <sub>2.5</sub>          | $PM_{2.5}$ is an emerging issue because it may be responsible for specific health effects.<br>There is a lack of data on $PM_{2.5}$ . Monitoring and source assessments are being<br>encouraged (MfE 2002). Estimates of $PM_{2.5}$ are possible but major assumptions are<br>required due to limited emission factor data.                                                                                                                                                                                                                                                                        |
| Sulphur dioxide $(SO_2)$   | $SO_2$ is mainly produced by the burning of fossil fuels. The primary sources are coal (<0.5 – 3.0 % sulphur), fuel oil (0.5 - 3.5 % sulphur) and diesel (0.3 % sulphur). There is no significant sulphur in natural gas, petrol, or in wood. A number of industrial processes also emit sulphur dioxide, while volcanoes are a major natural source. The primary effect of $SO_2$ is as a respiratory irritant, although on a global scale it is also of concern in the production of acid rain and acidification of soils.                                                                       |
| Carbon Monoxide<br>(CO)    | CO is formed as a product of incomplete combustion in burning fossil fuels. The main source in New Zealand is motor vehicle emissions, and elevated levels are mainly found in areas of significant traffic congestion. Other sources can include domestic fires, and industrial combustion. CO is a poisonous gas, which acts by displacing oxygen from the blood. Prolonged exposure at moderate levels can lead to symptoms such as headaches and dizziness. Chronic exposure at lower levels has been linked to an increased incidence of heart disease.                                       |

### Table 2-1 Comments on Contaminants Included

| Contaminant                                                                | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOCs<br>(acetaldehyde,<br>benzene, 1,3-<br>butadiaene and<br>formaldehyde) | Priority hazardous air contaminants have been selected for air-shed management in the updated Air Quality Guidelines 2002. Emission factors are currently being developed for these contaminants, in particular, for vehicles by the Ministry of Transport. Some emission factors for these pollutants are available from Australia and the USA.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Carbon dioxide,<br>nitrous oxide and<br>methane                            | Methane, N <sub>2</sub> O and CO <sub>2</sub> are included in the updated inventory because they are greenhouse gases and have assumed more political importance. Results may be used to determine the effect of national policies at a regional level over time. Estimation methods are available from central government and international agencies. N <sub>2</sub> O mainly occurs from biogenic sources and nitrogen in soils.                                                                                                                                                                                                                                                                                                                                             |
| Oxides of<br>Nitrogen (NO <sub>x</sub> )                                   | $NO_x$ describes nitric oxide (NO) and nitrogen dioxide (NO <sub>2</sub> ) which are formed in<br>combustion processes by oxidation of the nitrogen present in combustion air. Nitric<br>oxide is the primary product, which is then oxidised to $NO_2$ in ambient air. Motor<br>vehicles are the major source of $NO_x$ in most parts of NZ. Power stations and other<br>large combustion sources may be significant localised sources. The main health effects<br>are due to $NO_2$ , which is a respiratory irritant. In major urban areas (e.g. Los Angeles)<br>both gases are a concern as precursors for photochemical smog, produced from $NO_x$<br>reacting with hydrocarbons under the influence of sunlight. Globally, $NO_2$ is also a<br>contributor to acid rain. |
| Hydrogen<br>Sulphide (H <sub>2</sub> S)                                    | $H_2S$ is a highly toxic gas with the characteristic odour of rotten eggs. It is a major component of geothermal emissions. $H_2S$ is also produced from anaerobic decomposition of many organic wastes, and is a by-product of pulp and paper manufacture, the tanning industry and meat rendering plants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                            | The primary health effects of $H_2S$ are on the nervous system. At high concentrations the gas causes paralysis of the vital functions such as breathing. Victims die from asphyxiation. At low concentrations $H_2S$ can anaesthetise the sensory organs and cannot be smelt when present in dangerous concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dioxins                                                                    | Dioxins are a class of complex organic compounds known as polychlorinated dibenzo-<br>p-dioxins and the related polychlorinated dibenzofurans. These are formed at trace<br>levels in most combustion processes. They are persistent in the environment, and<br>some members of the group are extremely toxic. The chemical 2,3,7,8-<br>tetrachlorodibenzo-p-dioxin is a human carcinogen and has been labelled "the most<br>toxic chemical known to mankind".                                                                                                                                                                                                                                                                                                                 |
|                                                                            | MfE published an inventory of dioxin emissions <sup>1</sup> including industrial, domestic and natural sources such as forest fires. The biggest contributors were landfill fires, domestic burning and other combustion sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Agrichemicals                                                              | Agrichemical spray drift is a large source of air pollution complaints in the Bay of Plenty, particularly near intensive horticultural areas. Herbicide drift can damage horticultural crops. The use of insecticides and fungicides is also of concern when they are used incorrectly usually due to the possible human health effects from exposure. Issues also arise from contamination of organically-grown produce.                                                                                                                                                                                                                                                                                                                                                      |
| Pollen                                                                     | Airborne pollen can cause significant impacts in the Region at certain times of the year.<br>Plantation forests are a major source of airborne pollen, which affects visual air quality,<br>and causes nuisance impacts due to deposition. There are also health concerns about<br>effects on people who suffer from asthma and other respiratory illnesses.                                                                                                                                                                                                                                                                                                                                                                                                                   |

<sup>&</sup>lt;sup>1</sup> Ministry for the Environment, New Zealand inventory of dioxin emissions to air, land and water, and reservoir sources, March 2000



## 3. Methodology and Data Sources

## 3.1 Data Collection Criteria

The data were collated on a district council area basis wherever possible.

The various sources selected for the inventory represent the most significant sources in the Region encompassing: transport, industrial, residential and commercial, agricultural, forestry, and geothermal sources as for the 1996 inventory. Biogenic and greenhouse emissions are new to the inventory.

The urban and rural distribution of emissions was also of interest, because many of the sources tend to be concentrated into urban areas. Contributions from the three largest urban areas in the Region i.e. Rotorua, Tauranga and Whakatane were estimated.

Data were collected to represent as closely as possible the 2001 reference year and the most reliable source for activity data that was available.

## 3.2 Data Sources

Most emission estimates were calculated using emission factors and activity statistics. For example:

| Motor vehicle emissions     | = | Emission factor g/km | * | vehicle kilometres travelled |
|-----------------------------|---|----------------------|---|------------------------------|
| Industrial boiler emissions | = | Emission factor g/l  | * | litres of fuel used          |

The emission factors used were from a number of sources depending on availability. Factors used were mainly from the Australian National Pollutant Inventory Emission Estimation Techniques (NPI EET). This database has factors for speciating VOCs that were not available from other sources. The majority of EET factors are derived from the US Environmental Protection Agency (US EPA 1996) and other US EPA references and are therefore consistent with other New Zealand studies that rely on US EPA factors.

Information from recent emissions inventories in New Zealand was also used, particularly where New Zealand specific emission factors and activity data have been derived, such as used in Christchurch (Wilton 1999), Nelson (Wilton 2001) and Auckland (Environet Ltd 2003). Data and methodologies from the New Zealand Greenhouse Gas Inventory (NZGHGI 2002) and the New Zealand Dioxin Inventory (2000) were used to be consistent with national reporting.

The Ministry for the Environment advised that factors from the United Nations Environmental Programme Dioxin Toolkit (UNEP 2001) should be used in preference to those in the New Zealand Inventory because these would be used in the next national dioxin inventory<sup>2</sup>.

The emission factors used in this inventory were generally more specific and more comprehensive than those from the previous study. Some of the new factors required activity data of a different form to the old factors.

The methodology and activity data for each source type are summarised in sections 3.2.1 to 3.2.7 below.

## 3.2.1 Industrial

Industrial emissions sources included wood, diesel, coal, and gas combustion, asphalt plants, quarries and timber processes. Emission monitoring data was available for Carter Holt Harvey Tasman, Fletcher Challenge Forests Ltd Rotorua, ICI NZ Orica, Dominion Salt, and NZMP Ltd Edgecumbe. Monitoring data, rather than emission factors, were used for estimating the emissions for particular contaminants where available.

Industrial sites were identified from Environment Bay of Plenty records of air discharge consent holders. Quarry sites were identified from an Environment Bay of Plenty monitoring report (Environment B·O·P, 1999) and spray painting operations were identified by council staff<sup>3</sup>.

Most activity data was sourced by directly contacting the industrial sites through a mail survey and follow up phone calls to obtain information such as production or fuel use rates and hours of operation for 2001. A summary of the sources and activity data for the estimation is provided in Appendix A. Data for quarries, spray painting and abrasive blasting operations is in the SKM spreadsheet *"industrial source calcs.xls"*.

US EPA<sup>4</sup> and UNEP emission factors were used for estimating industrial emissions. Emission factors applicable to quarrying and aggregate extraction were not available from US EPA without significant information for industrial sites such as: overburden removal rates, soil moisture, blasting activity and vehicle types and movements. A factor from Parrett (1992) was used to estimate emissions from extraction because it could be more simply applied. US EPA emission factors for uncontrolled crushing and screening were used to estimate processing emissions.

<sup>&</sup>lt;sup>2</sup> pers com. Simon Buckland, Ministry for the Environment, February 2003

<sup>&</sup>lt;sup>3</sup> Facsimile, Shane Iremonger, 11 December 2002

<sup>&</sup>lt;sup>4</sup> EPA, Air Chief Version 9.0, December 2001

The industrial figures, reported for VOCs in sections 5, are low because they are for combustion and bitumen processes only. No activity data directly related to large scale industrial solvent use was collected as part of this study, but it was estimated as part of domestic and commercial emissions as discussed below.

For spray painting and abrasive blasting, activity estimates were based on the Nelson Emission Inventory (2001) rather than directly surveying these industries within the Region due to limited resources. The Nelson activity data is useful as a screening level assumption on the basis that these types of operations around New Zealand are likely to have similar "average" levels of activity. This could be investigated in the future via a regionally specific survey, although the overall contribution of these sources is relatively minor.

The Nelson Inventory (2001) gave a rate of emission of 2.7 kg of VOC per site per day for spray painting operations. Emissions were calculated assuming operating hours of 5.5 days per week and 50 weeks per year. VOC emissions from spray painting are estimated at around 85 tonnes per year. The NZGHGI methodologies used for NMVOCs from domestic and commercial emissions, as discussed in section 3.2.4 of this Report, include industrial paint application, therefore the estimates based on Nelson were not included in the inventory total to avoid double counting. The total from all sources using the NZGHGI method was about 600 tonnes per year.

## 3.2.2 Transport

## 3.2.2.1 Rail

An emission model from the Ministry of Transport (MoT 1999) was used to estimate emissions for rail transport. The rail model contains a database of the entire New Zealand rail network. Emission factors are built into the rail model for each section of track depending on factors such as typical speeds and the incline. The model calculates emissions of VOC, NO<sub>x</sub>, CO and total particulate matter. Emissions were calculated by the model based on train schedule data for 2001, which was provided by Tranz Rail. Data for particular rail lines was extracted from the model using a spatial overlay of the regional and district council boundaries.

VOCs of interest were estimated based on EET emission factors using fuel consumption data that was output from the MoT model. The EET factors are presented in Table 3-1. Fine particles were estimated on the basis of figures used in the Auckland inventory (ARC 1998) that were originally from US EPA sources.

#### Table 3-1 EET Factors for Rail Transport

| Pollutant      | Line Haul Emission (g/I of Fuel) |
|----------------|----------------------------------|
| Acetaldehyde   | 0.755                            |
| Benzene        | 0.044                            |
| 1,3-butadiaene | 0.0401                           |
| Formaldehyde   | 0.223                            |

Dioxin emission factors are available from UNEP (2001) for steady state operation of diesel engines. The factor is 0.5 µg TEQ tonne<sup>-1</sup> of fuel burned. CO<sub>2</sub> was estimated using a factor from the NZGHG inventory of 68.7 tonnes per TJ for diesel fuel and diesel consumption data generated by the model. SO<sub>2</sub> was estimated on the basis of 0.2 % weight sulphur in the fuel (Ministry for Economic Development 2000).

The rail model was used to backcast 1996 emissions rail emissions but the data provided for the previous study could not easily be applied to the model. New data was obtained from Tranz Rail. Tranz Rail provided data from 1998 as being representative of 1996, because 1996 data was not available.

2001 rail data for the Rotorua line was based on 405 movements along the track (a total for both directions) to approximate a daily return service for 2001, which ceased in approximately October. The line is now mothballed<sup>5</sup>. The Taneatua and Whakatane branch lines were not incorporated into the rail model because the lines had infrequent services or were not used. Hence, activity on these lines could not be accounted for<sup>6</sup>. The assistance of "The Fuels and Energy Group" is acknowledged in running the rail model.

#### 3.2.2.2 Road

Motor vehicle emission factors were derived from the MoT vehicle model for 2001 (NZTER version 1). A default vehicle fleet profile was used as recommended by the MoT because it was considered that data from regional vehicle registrations would not necessarily be reflective of the local fleet<sup>7</sup>. This differs from the approach used in 1996<sup>8</sup>, and may under estimate the contribution from diesel vehicles, which are expected to be higher than average due to the Region's forestry and port activities.

 <sup>&</sup>lt;sup>5</sup> Pers com, Tony White, Tranz Rail, December 2002
 <sup>6</sup> Pers com, Karen O'Reilly, Fuels and Energy, December 2002

<sup>&</sup>lt;sup>7</sup> Pers com, Paul Irving, MoT, November 2002

<sup>&</sup>lt;sup>8</sup> Information on vehicle types was obtained from the Land Transport Safety Authority's Motor Registration Centre.

 $CO_2$  and  $SO_2$  were estimated from factors used in the Nelson inventory (2001) because factors were not available from the NZTER. These were based on an extrapolation from the Christchurch inventory (1999) using national fleet data for 2001. The emission factors in grams of pollutant per kilometre travelled (VKT) are presented in Table 3-2.

## **Table 3-2 Motor Vehicle Emission Factors From VFECs and Nelson (2001)**

| Road Condition            | Grams pollutant per VKT |       |       |       |                 |                 |  |
|---------------------------|-------------------------|-------|-------|-------|-----------------|-----------------|--|
|                           | РМ                      | СО    | NOx   | VOC   | SO <sub>2</sub> | CO <sub>2</sub> |  |
| Rural Highway – free flow | 0.140                   | 4.634 | 2.206 | 0.629 | 0.217           | 367.85          |  |
| Suburban – free flow      | 0.137                   | 7.906 | 2.282 | 1.287 | 0.217           | 367.85          |  |

All PM was assumed to be  $PM_{10}$  and  $PM_{2.5}$  was assumed to be 60% of  $PM_{10}$  as per the Nelson Inventory.

Territorial local authorities and Transit New Zealand supplied VKT data based on traffic flow measurements, or projections, if measurements were not available. There is a reasonable amount of uncertainty in the data because counts are not available for all sections of all roads, and road counts are not done every year. Either the 2001 count or the latest count available was used, but sometimes these data were as old as the early 1990s.

Speciation of VOCs was based on EET factors as a weighted average for diesel and petrol vehicles in the fleet. The speciation factors used are presented in Table 3-3.

## Table 3-3 Speciation factors for Motor Vehicles (weight % of VOC)

| Benzene | Acetaldehyde | 1,3-Butadiaene | Formaldehyde |
|---------|--------------|----------------|--------------|
| 0.06    | 0.03         | 0.01           | 0.03         |

The dioxin emission factor for a 4–stroke engine running on unleaded fuel without a catalyst is 0.1  $\mu$ g TEQ tonne<sup>-1</sup> of fuel burned UNEP (2001). Fuel consumption was estimated by assuming an average fuel consumption rate of 13 litres per 100 kilometres (about 10.4 kg per 100 km)<sup>9</sup> and multiplying by the vehicle kilometres travelled. Emission factors used in the New Zealand Dioxin Inventory (2000) are based directly on VKTs and are 16 to 25 pg per kilometre. Dioxin estimates using UNEP factors were within the range of the New Zealand inventory factors.

<sup>&</sup>lt;sup>9</sup> US Greenhouse Gas protocol weighted average of diesel and petrol

## 3.2.2.3 Shipping

Commercial shipping movement and time-in-port information was obtained from the Port of Tauranga. Pleasure craft ownership data for the Region is available from the Maritime Safety Authority<sup>10</sup>, but it was not obtained due to an absence of relevant activity data. Pleasure craft contributed 0.1% or less to the athropogenic emissions in Auckland (ARC 1998) and would not be expected to alter the findings of the inventory if estimates were included for the Bay of Plenty.

Emission factors for shipping were from the NIP EET for a gross registered tonnage of 10,000 - 50,000. The relevant emission factors are summarised in Table 3-4. It was assumed that the auxiliary engines were run while in port, and the main engines were run while entering and leaving the harbour. The average berthing time was 25 minutes. The contribution of shipping to the Tauranga urban area was assumed to be that of running the auxiliary engines while in port.

|  | Table 3-4 | EET | Emission | Factors | for | Commercial | Shipping |
|--|-----------|-----|----------|---------|-----|------------|----------|
|--|-----------|-----|----------|---------|-----|------------|----------|

| Source      |      |                 | Emission Fac    | ctor (kg/hour) |       |                 |
|-------------|------|-----------------|-----------------|----------------|-------|-----------------|
| Source      | СО   | NO <sub>x</sub> | SO <sub>2</sub> | TSP            | VOC   | CO <sub>2</sub> |
| Main engine | 13.5 | 167             | 127             | 16.8           | 3.41  | 8040            |
| Aux engine  | 1.19 | 6.66            | 5.66            | 0.9            | 0.436 | 430             |

Acetaldehyde, benzene, 1,3-butadiaene and formaldehyde were estimated using the speciation factors in Table 2-6.  $PM_{10}$  and  $PM_{2.5}$  were estimated from TSP.

## Table 3-5 EET VOC and PM Speciation for Commercial Shipping Exhaust

| Pollutant         | Weight Fraction Diesel Exhaust |
|-------------------|--------------------------------|
| Acetaldehyde      | 0.0327                         |
| Benzene           | 0.0191                         |
| 1,3-butadiaene    | 0.0158                         |
| Formaldehyde      | 0.0968                         |
| PM <sub>10</sub>  | 1                              |
| PM <sub>2.5</sub> | 0.92 <sup>1</sup>              |

<sup>1</sup> ARC 1997

Emission factors for dioxin on the basis of time in port were not available. The UNEP factor for diesel engines is  $0.5 \ \mu g$  TEQ per tonne of fuel burned. Fuel consumption data for shipping, in particular pertaining to the Tauranga District was not available, therefore dioxin emissions for shipping have not been included.

<sup>&</sup>lt;sup>10</sup> Pers com, Shane Iremonger, January 2003

SINCLAIR KNIGHT MERZ

## 3.2.2.4 Aircraft

Airport activity data for the number of takeoffs and landings was obtained from a report on Regional Airport Requirements (RAR, 2002). Movement data for the three airports was reported for both 1996 and 2001. Landing and take offs (LTOs) were assumed to be half the number of movements, and are summarised in Table 3-6. Data was also obtained from airport managers for 2001 as per the previous inventory, but there were some large differences in the figures between the two sources.

The RAR report was considered a reasonable source of LTO data for the airports and allowed domestic passenger and general aviation movements to be differentiated, which was useful for the application of emission factors.

| Airport      | Movement Type    | LTOs 1996 | LTOs 2001 |
|--------------|------------------|-----------|-----------|
| Tauranga     | Domestic         | 3,766     | 5,648     |
|              | General aviation | 20,181    | 31,254    |
| Rotorua      | Domestic         | 6,349     | 5,990     |
|              | General aviation | 12,342    | 8,509     |
| Whakatane    | Domestic         | 1,456     | 1,664     |
|              | General aviation | 931       | 931       |
| Total Region |                  | 45,025    | 53,996    |

## Table 3-6 Regional Aircraft LTOs for 1996 and 2001

Emission factors applicable to regional aircraft and general aviation were used from the Australian NPI EET. Regional airlines are defined as those that provide regular scheduled public transport services linking smaller rural centres with principle cities. The general aviation sector includes private, business, training and agricultural aerial movements. Default time-in-mode data is used in the emission factors from the EET.

Selected VOCs and  $PM_{10}$  were estimated based on the EET speciation factors presented in Table 3-7.

## Table 3-7 EET Speciation Factors for Aircraft

| Pollutant        | Weight Fraction |
|------------------|-----------------|
| Acetaldehyde     | 0.0465          |
| Benzene          | 0.0194          |
| 1,3-butadiaene   | 0.018           |
| Formaldehyde     | 0.1501          |
| PM <sub>10</sub> | 0.976           |

Emission factors for  $CO_2$  and dioxin based on LTOs were not available. Fuel consumption data could be used to estimate emissions but it is not readily available and consequently dioxin from aviation has not been included in this inventory. At a national level the NZGHGI (2002) reports that  $CO_2$  from aircraft contributes 1.1% of the total greenhouse gas emission or 843,200 tonnes. This figure was prorated on a population basis to estimate  $CO_2$  from aviation for the Bay of Plenty. This is likely to over estimate  $CO_2$  because aircraft movements are not expected to be directly proportional to population.

### 3.2.3 Waste

Emissions from the waste sector (municipal wastewater plants and landfills) are primarily greenhouse gases (GHGs), i.e. methane, nitrous oxide and CO<sub>2</sub>.

Greenhouse gases were estimated using methods from the NZGHGI. That inventory uses a methodology for landfills, which uses total annual tonnage over time and predicts methane emissions for a particular year. The method uses generic assumptions, which are independent of the number of landfills (open or closed). Gross tonnages for the Region were used as a basis for apportioning methane estimates from the NZGHGI.

During the data collection phase of this study MfE was finalising the landfill review and audit report, which includes an update of the 1998/99 national landfill census. The report includes the number of landfills broken down by region for 2002 as well as the 1995 and 1998/99 figures. Unfortunately these data are reported as aggregated regional numbers, because the information is considered commercially sensitive for private landfill operators. Therefore, calculations for individual sites that would allow for emissions to be estimated by district are not possible. In any case, similar information is not available for closed landfills, but closed landfills are an important consideration because they continue to emit landfill gas for up to thirty years with gas peaks often occurring after closure. This aspect is accounted for in the NZGHGI methodology.

The Bay of Plenty disposed of 221,000 tonnes/annum in 1998 and 151,000 tonnes/annum in 2002. The national waste figure used for the 2002 for the NZGHGI was 3,389,000 tonnes/annum, therefore the Region is estimated to be contributing about 4.5% of national methane emissions from landfills. The predicted emissions were prorated for each district on the basis of population. This is a simplification because some districts no longer have active landfills, but there are still emissions from closed landfills with those districts.

The reduction in waste quantities for the Region over the period reported by MfE is likely to be attributed to transportation of waste from Tauranga and Western Bay of Plenty to the Waikato Region.

 $CO_2$  was calculated on the basis of 55% methane and 45%  $CO_2$  in the landfill gas with no capture and flaring.  $CO_2$  released from waste is the decomposition is derived from biomass sources (e.g. crops, forests) which are re-grown on an annual basis. The Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories only report  $CO_2$  from non-biogenic wastes.  $CO_2$  from landfills has however been accounted for in the totals reported here because the effects of land use changes have not been accounted for in this inventory, where as they are in the NZGHGI. Care is therefore needed in making comparisons to the NZGHGI.

The US EPA default concentration for benzene applicable to landfills with no or unknown codisposal is given in Table 3-8. No information was available for the other selected VOCs, although these can be expected to occur.

## Table 3-8 Speciated Landfill Gas Constituents (US EPA defaults)

| Pollutant | Molecular weight | Concentration ppmv |
|-----------|------------------|--------------------|
| Benzene   | 78.11            | 1.91               |

Data on wastewater treatment plants was obtained from the NZGHGI and the Environment Bay of Plenty consents database. The methodology for estimating emissions from each treatment plant used a population-based estimate of waste quantity and emission factors for particular types of plant as per the NZGHGI. Industrial (on-site) wastewater operations are included in the estimates per district by estimating the population equivalents relevant to the industrial contribution.

## 3.2.4 Domestic and Small Commercial Sources

## 3.2.4.1 Domestic Home Heating

Fuel sales data was not used for the 2001 because accurate fuel sales data was not able to be obtained, particularly for wood, which has many outlets and private sources. Coal Research Limited was contacted regarding coal fuel sales and advised there had been no survey since 1995. Obtaining the data for fuel sales is dependent on the level of cooperation of the suppliers. Gas sales data was obtained from a number of suppliers but was not able to be used because it was not complete due to a lack of co-operation from some suppliers.

New Zealand Statistics data for the main fuel types used in the Bay of Plenty are summarised in Table 3-9. The actual total number of dwellings is less than shown because many dwellings use more than one heat source. "Other" includes electricity, solar power and no heating. The data cannot be used directly because it does not relate to the relative mass of fuel consumed. The data suggests that gas use is increasing and coal is decreasing.

| Heat Source | Number of Dwellings |         |  |
|-------------|---------------------|---------|--|
|             | 1996                | 2001    |  |
| Mains gas   | 4,965               | 7,491   |  |
| Bottled gas | 23,892              | 30,135  |  |
| Wood        | 39,009              | 38,403  |  |
| Coal        | 3,795               | 2,880   |  |
| Other       | 55,173              | 55,455  |  |
| Total       | 126,834             | 134,364 |  |

### Table 3-9 Fuel Type Used to Heat Dwellings Bay of Plenty 1996 and 2001

Domestic home heating estimates for wood, gas and coal combustion were based on data from domestic emission surveys conducted in other areas of New Zealand. Small commercial sources, which were previously included based on fuel sales data could not be included.

Two approaches were considered to estimate domestic home heating emissions. The first was based on extrapolating data from the Timaru and Nelson inventories and the second was based on Auckland domestic survey data (Environet Ltd 2001). The domestic home heating surveys for Nelson and Timaru (Wilton 2001) gave an average daily wintertime fuel consumption of about 10 kg per day during the wintertime. The Auckland figure was about 5 kg per day, half the South Island figure. The Bay of Plenty is probably somewhere between the two figures, but local data collection using a domestic survey would be needed to confirm this.

Aspects such as age and type of appliances and fuel use (type and quantity) in Auckland are more likely applicable to the Bay of Plenty than data for the South Island. Auckland emissions estimates were therefore used to estimate emissions by prorating on a population basis. The relevant emission factors from the Auckland study are provided in Table 3-10.

| Appliance time       | Emission factor g/kg    |      |                 |                       |      |                 |                   |
|----------------------|-------------------------|------|-----------------|-----------------------|------|-----------------|-------------------|
| Appliance type       | <b>PM</b> <sub>10</sub> | СО   | NO <sub>x</sub> | SO <sub>2</sub>       | VOC  | CO <sub>2</sub> | PM <sub>2.5</sub> |
| Open fire – wood     | 10                      | 100  | 1.6             | 0.2                   | 30   | 1600            | 10                |
| Open fire – coal     | 21                      | 80   | 4               | 5.0                   | 15   | 2600            | 12                |
| Pre 1991 woodburner  | 13                      | 130  | 0.5             | 0.2                   | 39   | 1600            | 13                |
| 91-96 woodburner     | 7                       | 70   | 0.5             | 0.2                   | 21   | 1800            | 7                 |
| Post 1997 woodburner | 6                       | 60   | 0.5             | 0.2                   | 15   | 1800            | 6                 |
| Multifuel – wood     | 13                      | 130  | 0.5             | 0.2                   | 39   | 1600            | 13                |
| Multifuel – coal     | 28                      | 120  | 1.2             | 3.0                   | 15   | 2600            | 12                |
| Oil                  | 0.9                     | 0.6  | 2.2             | 3.8                   | 0.25 | 3200            | 0.43              |
| Gas                  | 0.6                     | 0.18 | 1.3             | 7.6 *10 <sup>-9</sup> | 0.2  | 2500            | 0.04              |

### Table 3-10 Emission Factors for Domestic Heating from ARC (Environet Ltd, 2001)

To estimate dioxin emissions it was necessary to calculate the fuel use based on population and apply emission factors. The emission factors used were average emission factors for wood and coal from the Timaru Inventory, which were based on data from Christchurch. The factors were 8.5 and 7.5  $\mu$ g I-TEQ per tonne respectively.

Emission factors for acetaldehyde, 1,3-butadiaene, and formaldehyde were not available and they were not included in the inventories on which the extrapolations were made, therefore estimates of selected VOCs for home heating are were not possible.

## 3.2.4.2 Backyard Burning

Emissions from backyard burning were not included in the Timaru and Christchurch inventories because the practice is banned. Auckland has some restrictions that apply and it was considered that the built up nature of much of the Auckland Region means that the data for backyard burning would not necessarily be applicable to the Bay of Plenty.

Outdoor burning was included in the Nelson (2001) inventory and data from that study has been used here. Emissions were estimated by applying an emission factor to activity data collected as part of the domestic survey. The average weight of material per burn was assumed to be 150 kg and 12% of households burn with an average of 10.6 burns per year. Emission factors were from AP-42 based on a 60:40 split of garden versus household waste as per the Nelson Inventory (2001). The emission factors are provided in Table 3-11. Wintertime estimates were based on 3.2 burns per year.

| Emission factor g/kg of waste burnt |                         |    |                 |     |     |                 |         |
|-------------------------------------|-------------------------|----|-----------------|-----|-----|-----------------|---------|
| PM <sub>2.5</sub>                   | <b>PM</b> <sub>10</sub> | СО | NO <sub>x</sub> | SOx | VOC | CO <sub>2</sub> | Benzene |
| 11.7                                | 12.5                    | 42 | 3               | 0.5 | 4.3 | 1470            | 0.5     |

### Table 3-11 Emission Factors for Backyard Burning

New Zealand Dioxin Inventory (2000) emission factors for dioxin from backyard burning are provided in Table 3-12. The UNEP factor was used in this inventory. The UNEP factor is at the high end of the range of the MfE factors.

### Table 3-12 Dioxin Emission Factors for Backyard Burning

|                 | Range µg I-TEQ per tonne |           |      |
|-----------------|--------------------------|-----------|------|
|                 | MfE Lower                | MfE Upper | UNEP |
| Organic waste   | 1                        | 29        | -    |
| House waste     | 29                       | 300       | -    |
| Weighted factor | 9.4                      | 110.3     | 300  |

In the New Zealand Dioxin Inventory backyard burning estimates were based on the ARC inventory (1998). This gave a national per capita figure of 15 kg of waste burnt per person per year. This compares with 70 kg for the Bay of Plenty using the Nelson data. It is possible that burning rates in other parts of New Zealand are higher than Auckland because restrictions apply to burning in Auckland. Therefore the higher figure from Nelson has been used for the Bay of Plenty.

As for home heating, estimates of selected VOCs are not possible because speciation factors are not available.

## 3.2.4.3 Lawn Mowing

Lawn mowing emissions were estimated by prorating data from the Auckland Inventory (1998) on the basis of the number of dwellings. In Auckland ninety-three percent of the population had lawns to mow, and 89% of them used motor mowers.

Summer use was estimated at 0.35 hours/mower/week and wintertime use was estimated at 0.16 hours/mower/week. Hand and electric mowing accounted for 11% of lawnmower use. Emission factors used in this inventory were a weighted average of 2-stroke and 4-stroke mowers based on the Auckland inventory and were applied on a per household basis. Dioxin emissions could not be calculated because emission factors are based on fuel consumption and fuel consumption is not known.

Emission of acetaldehyde, 1,3-butadiaene, and formaldehyde were estimated on a percent weight basis of VOC based on data from the EET.

## 3.2.4.4 Solvent Use

The method for estimating non-methane VOCs (NMVOCs) was based on the NZGHGI method, which provides New Zealand per capita emission factors for paint application, drycleaning and chemical manufacturing and uses an aggregate estimate for domestic and commercial emissions as in Table 3-13.

Population numbers used were from Statistics New Zealand as reported elsewhere in Table 1-2.

Estimates of VOC from spray painting were made as discussed under Section 3.2.1, but were not included in the totals because emissions are already accounted for.



## **Table 3-13 Solvent and Other Product Use (NZGHGI 2002)**

| Category                      | kg VOC/person per year |
|-------------------------------|------------------------|
| Surface coatings and thinners | 4.03                   |
| Degreasing and drycleaning    | 0.62                   |
| Chemical products             | 1.00                   |
| Printing                      | 0.41                   |
| Small Commercial              | 0.23                   |
| Industrial                    | 0.90                   |
| Other domestic and commercial | -                      |
| Household products            | 0.86                   |
| Toiletries                    | 0.64                   |
| Rubbing compounds             | 0.29                   |
| Windshield rubbing fluids     | 0.29                   |
| Adhesives                     | 0.13                   |
| Polishes and waxes            | 0.22                   |
| Space deodorisers             | 0.09                   |
| Laundry products              | 0.02                   |
| Sub Total                     | 2.54                   |
| Total                         | 9.73                   |

It was assumed that all industrial uses of solvents are covered in the NZGHGI per capita estimates. Regional variation could occur if there were a proportionately large number of industrial facilities with large scale solvent use. Data would need to be collected from resource consent information, monitoring and or direct survey to investigate this.

## 3.2.5 Agriculture and Forestry

## 3.2.5.1 Livestock and Crops

Emission estimates of  $CH_4$  and  $N_2O$  from livestock, manure, fertiliser use and from burning crop residues were based on the NZGHGI methodologies using data for livestock numbers, fertiliser application rate data and land use data. Details of the calculations can be found in the SKM spreadsheet "*Agriculture/GHG.xls*".

Methane and N<sub>2</sub>O emissions from enteric fermentation and manure management were estimated using livestock numbers for the Region obtained from Statistics New Zealand as at June 1999. Data by district council was not available.

Land cover data was used for estimating pollen and biogenic emissions of  $NO_2$  and VOC. The data summarised in Table 3-14 was obtained from MAF<sup>11</sup>. Forestry data by district was obtained from MAF (2001). Radiata pine is the dominant species, making up 89 percent of the planted forest area, with Douglas-fir the next most common species, making up 6 percent.

Territorial local authorities were contacted to obtain information on burn off areas, but only Opotiki District Council was able to provide information. Opotiki District reported 10 hectares of planned burning and 100 hectares of unplanned burning. Forestry companies were contacted directly for data on burn off rates from their operations. Anecdotally, it appears that the practice of burning has been very much reduced in the Region over the last five to ten years, and the practice is no longer generally acceptable.

While estimates for burning forestry could not be made, the NZGHGI methods provide an estimate of CO, NOx and methane on the basis of the area used for cropping so this was included. Particulate matter, which is a principal contaminant from burning was not able to estimated.

| Туре              | Hectares  |
|-------------------|-----------|
| Planted Forest    | 267 000   |
| Indigenous Forest | 569 800   |
| Shrubland         | 46 000    |
| Tussock           | 3 800     |
| Pastoral          | 279 800   |
| Horticultural     | 13 400    |
| Inland Water      | 24 100    |
| Inland Wetland    | 700       |
| Coastal Wetland   | 2 500     |
| Bare Ground       | 4 900     |
| Coastal Sands     | 2 200     |
| Urban Areas       | 10 400    |
| Urban Open space  | 1 500     |
| Total             | 1 226 100 |

## Table 3-14 Land Cover Class for Bay of Plenty (1996 / 97)

<sup>&</sup>lt;sup>11</sup> www.maf.govt.nz/statistics/primaryindustries/regions/tables/landcover/bop.htm. SPOT satellite imagery dated 1996/97. Version 2 based on imagery dated 2001/02 should be available January 2004

## 3.2.5.2 Pesticides

Pesticide use in kg of active ingredient per annum was estimated from application rate data for particular land uses, which were given in a MAF review of pesticide use (MAF 1999).

The MAF review was the most recent source of information on pesticide use patterns.<sup>12</sup> It includes information from producer boards, grower groups, companies and agricultural consultants. Regional data on application rates was used for the estimates where available otherwise, national average data was used. The data on application rates was gathered using spray diaries.

The application rate data was used with land use data from MAF 1999 survey work and Statistics New Zealand for 1996. The inventory should be updated as more recent land use data becomes available. The calculation will slightly overestimate total use, because the land area that is in organic production is unknown and has not been accounted for. The MAF report gives a figure for organic kiwifruit production of 7% of the total acreage, but figures for other crops were not available.

The total pesticide use for New Zealand (excluding mineral oil) grew between 1984 and 1994 reaching a peak of about 3,700 tonnes of active ingredient per annum and has declined to the 1998 total of 3,300 tonnes. Herbicides dominate pesticide use (68%) followed by fungicides (24%) and insecticides (8%). About two thirds of total use is concentrated in four classes of pesticides (phenoxy hormones, phosphonyls, inorganic fungicides, dithiocarbanates).

MAF reported that pesticide use in production of vegetables such as asparagus, green peas and sweetcorn is relatively low and is mainly concentrated on early season weed control. Fresh vegetables such as lettuce, brassicas and potatoes tend to have intensive spray programmes throughout the growing season. Onions receive very frequent pesticide applications. Pesticide use in plantation forestry is concentrated on weed control during the first 1-2 years establishment phase of the crop rotation. Consequently, the overall impacts of pesticide use in the timber production cycle are minimal.

Pesticide use in kiwifruit production has undergone major reductions over the past decade with the adoption of the Kiwigreen integrated fruit production programme. Over 90% of kiwifruit is now grown under the Kiwigreen integrated pest control system which includes a limited range of pesticide options.

<sup>&</sup>lt;sup>12</sup> pers com. Ellen Blake, Ministry for the Environment, September 2002

SINCLAIR KNIGHT MERZ



## 3.2.5.3 Fertiliser

Fertiliser application rate data as a weighted average of various agricultural land uses was used to estimate the nitrogen input into soils and to subsequently calculate the N<sub>2</sub>O emission from soils. Application rate data was supplied by Ballance Agri-Nutrients Ltd and is summarised in Table 3-13.

| Туре                              | % Land Use | N (kg Nutrient / Hectare / year) |
|-----------------------------------|------------|----------------------------------|
| Dairy                             | 49%        | 113                              |
| Beef                              | 33%        | 22                               |
| Sheep                             | 9%         | 11                               |
| Other Livestock                   | 5%         | 22                               |
| Maize                             | 1%         | 280                              |
| Vegetables                        | 0%         | 436                              |
| Other Horticulture                | 1%         | 70                               |
| Other                             | 2%         | 517                              |
| Weighted average based on landuse |            | 79                               |

### Table 3-15 Nutrient Sales Waikato / Bay Of Plenty / King Country 2001-2002

The total area of the Region in production land was estimated at 298,600 hectares based on land use data from Statistics New Zealand (1999).

Fertiliser supply companies were contacted and advised that they could not release information on total fertiliser sales use because it is proprietary information. Therefore a comparison with the data from 1996 was not possible.

Statistics New Zealand has commenced an agricultural survey that includes collecting data on fertiliser use. In future this data will be useful for monitoring trends in fertiliser use.

## 3.2.5.4 Pollen

Pollen was estimated using the emission factor for exotic forestry plantations of 200 kg/ha from the previous inventory (OPUS 1997) and forestry data from MAF (2001)

## 3.2.6 Geothermal Use and H<sub>2</sub>S

Information on industrial uses of geothermal steam and  $H_2S$  emissions was obtained from resource consent monitoring data. An attempt was made to obtain information on the emissions from small users of geothermal steam by contacting the territorial authorities, but in all cases they said that

they were unable to provide the required data. Environment Bay of Plenty holds data on the main geothermal fields but estimates of  $H_2S$  are not possible at this time. This is discussed later in Section 5.7 of the report.

## 3.2.7 Biogenic Emissions

Emissions of nitrogen oxides and volatile organic compounds occur naturally from biogenic sources (living organisms). Biogenic emissions from vegetation and soils were estimated using land cover information presented in Table 3-14 and emission factors developed for the Auckland Regional Inventory (1998). Auckland is currently updating its inventory and has used the same emission factors. The Auckland emission rates are a combination of Australian and other overseas data. Factors for biogenic emissions of CH<sub>4</sub>, N<sub>2</sub>O and CO were not available from work done for the ARC.

An average annual temperature of 15°C was assumed for the Bay of Plenty Region and the emission factors corrected for sunlight and temperature are presented in Table 3-16. Seasonal and spatial variability could be investigated but fine scale land use data was not readily available and it is not considered that this would add significantly to the overall inventory.

| Land use category                      | kg NO <sub>x</sub> /9 km <sup>2</sup> /hr as NO <sub>2</sub> at 15°C |
|----------------------------------------|----------------------------------------------------------------------|
| Commercial / Industrial                | 0                                                                    |
| Residential                            | 0.029                                                                |
| Mixed rangeland pasture / agricultural | 0.289                                                                |
| Forest                                 | 0.039                                                                |
| Ocean / Water / Estuary                | 0.013                                                                |
| Barren land                            | 0.201                                                                |

### **Table 3-16 NO<sub>x</sub> Emission Factors for Different Land Uses**

The adjusted emission factors for VOCs are presented in Table 3-17. The Auckland study uses a model developed by the Victorian EPA that incorporates leaf biomass factors and environmental factors. The complexity of this model is beyond the scope of the current Bay of Plenty Inventory, therefore the factors have been simply applied to the Bay of Plenty Region adjusting only for differences in average annual sunlight and temperature. The emission factors did not include information on specific VOC species.

Biogenic sources including commercial forestry and indigenous forests are recognised as carbon sinks and reservoirs in national accounting for greenhouse gas emissions. The role of forestry as a
sink has not been taken into account in this study, although it should be noted that the Region's forests represents a significant reservoir of carbon.

#### ■ Table 3-17 VOC Emissions for Different Land Uses

| Land Line Cotogony     | Total VOC Emission Factor                                       |
|------------------------|-----------------------------------------------------------------|
| Land Use Category      | $\mu g/m^2/hour$ standardised to 15°C and adjusted for sunlight |
| Pine forests           | 707.4                                                           |
| Indigenous forests     | 444.2                                                           |
| Grasslands             | 66.2                                                            |
| Croplands              | 141.0                                                           |
| Scrublands             | 249.0                                                           |
| Residential/industrial | 19.5                                                            |
| Urban parkland         | 48.4                                                            |

### 4. Uncertainty

Uncertainties are inherent in any emission inventory. Uncertainty arises from:

- The use of average emission figures.
- Applying emission factors from other regions, or countries.
- Activity levels that cannot readily be captured.

The uncertainty in emission factors as a result of averaging is usually reported in the emission factor reference. Wherever possible emission factors have been used that are relevant to New Zealand. The MoT's rail and vehicle models containing New Zealand specific factors have been used for transport sources and New Zealand developed factors have been used for domestic heating.

US EPA derived factors have been used for industrial sources, this is typical practice because it is generally the only comprehensive data set, but they may not be relevant to New Zealand operating conditions. Real emission test data was used where available.

Factors for total particulate are not always available because the focus has been on  $PM_{10}$  for some time. Gaps in factors for total particulate have meant that meaningful estimates cannot be provided. There is also a lack of  $PM_{2.5}$  factors for non-combustion industrial sources making  $PM_{2.5}$  estimates uncertain due to the assumptions needed.

 $PM_{10}$  emission factors for wood combustion appear to be very conservative. Estimates using the emission factors compared to measurement data for Carter Holt Harvey Tasman give about four times the emission. The factors for  $PM_{10}$  have a significant effect on the inventory because industry is identified as a major source of  $PM_{10}$  and much of this is due to wood combustion.

Factors for specific VOCs are not readily available meaning covering of sources has been limited.

The pesticide application rate data, used to estimate pesticide use, is expected to be fairly representative because the survey involved growers keeping spray diaries of application rates and data specific to the Bay of Plenty was available. The calculations may however, overestimate the total use for the region because the data does not account for areas of land that may be in organic production.

The emission factors is used in the inventory were the best available at the time. Uncertainty in the activity statistics for each source is summarised in Table 4-1.



#### Table 4-1 Uncertainty in Activity Statistics for Inventory Sources

| Source      |                         | Comment                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transport   | Motor<br>vehicles       | Reasonable certainty in VKT data given the road length data from regional council data base. Limitations are in whether measurements have been taken at enough points on a road to be truly representative. Vehicle counts are likely to vary seasonally particularly, due to tourism over summer, but the VKT data is expected to be reasonably representative of an annual average.              |
|             | Rail                    | High certainty in activity data, based on train schedules provided by Tranz Rail.                                                                                                                                                                                                                                                                                                                  |
|             | Shipping                | High certainty in number of ships, and types of ships visiting the port and in the average berthing times, with data provided by the Port of Tauranga. Uncertainty in the assumption that the auxiliary engines run for the entire time the ships are in port.                                                                                                                                     |
|             | Aircraft                | Reasonable certainty in the data for landing and take offs obtained from the McGregor report prepared for the Regional Council, but low certainty for the time in mode data that is assumed in the factors used for Australian regional airports and general aviation.                                                                                                                             |
| Domestic    |                         | All domestic source activity data is reasonably uncertain because it has been<br>extrapolated from other regions where domestic surveys have been conducted.<br>For example, there was a factor of at least two difference in the activity factors<br>for fuel use for domestic heating in Auckland and South Island towns and large<br>differences in backyard burning rates for various regions. |
| Industrial  |                         | There is reasonable certainty in the activity data for industrial sources, the majority of which was obtained by direct contact with industry. Activity data for abrasive blasting and spray painting was extrapolated from Nelson, therefore there is less certainty with this, but the effect on the inventory is negligible.                                                                    |
| Agriculture | Pesticide<br>use        | The land cover data needed to apply the pesticide application rate data is now relatively old, being relevant to 1996/97, however, major land use changes are not expected to have occurred in this time and therefore the data is expected to be moderately certain although it does not allow for areas that are in organic production.                                                          |
|             | Pollen                  | Forestry data is from 1999 and is expected to be of high certainty. However, no pollen from other vegetation types has been included in the estimates. Forestry is the dominant landuse overall in the Region, so the data is considered to be moderately certain. (But note that the pollen emission factor is very crude).                                                                       |
|             | Livestock               | Livestock numbers were from Statistics New Zealand and data was available regionally, this data is expected to have a high level of certainty.                                                                                                                                                                                                                                                     |
|             | Agricultural<br>burning | Information on quantities of forestry burnoff were not generally available, and anecdotally the practice is much reduced, therefore forestry burning could not be directly included. The land use data on which crop burnoff emissions were estimated has moderate certainty.                                                                                                                      |
| Waste       | Landfills               | Regional quantities of waste per annum were used to extrapolate from national emission estimates. This is expected to be reasonably certain as it was obtained from the recent landfill census. This method of extrapolation does not account directly for the history of waste deposition and closed landfills specific to the Region, therefore it has moderate certainty.                       |
|             | Wastewater              | The activity data is based on national aggregate figures per head of population<br>and does not account for regional variation, therefore it is expected to have<br>moderate certainty.                                                                                                                                                                                                            |

| Source     |         | Comment                                                                                                                                                     |
|------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geothermal | Natural | Estimates of $H_2S$ were not possible because flux rates from geothermal fields are not known, although data on the field sizes and locations is available. |

Data availability for future inventories needs consideration. Data may not be available from the same sources as used here, for example, the RAR report. The ability to gather reliable information depends on cooperation from the people supplying the data and increasingly organisations are likely to seek payment for providing data, which needs to be accounted for in setting budgets.

Inventories are useful tools for assessing the sources contributing to pollution but the results need to be interpreted and used bearing in mind that the inventory is not the result of an exact science. Certain policy decisions may require a more refined and/or localised information base and further investigations may be needed in such cases.



### 5. Estimated Emissions 2001

This section presents the emission for the various sources estimates for the various sources based on the best information available for activity data and emission factors to represent the 2001 year. The data presented has been imported from the relevant calculation sheets, any apparent addition errors are due to rounding.

#### 5.1 Transportation

#### 5.1.1 Shipping

Tauranga is a major shipping port for New Zealand. A total of 1259 ships entered the port in 2001. The duration of the stay was on average 1.5 days and ships had an average gross registered tonnage of 17,800. The estimated emissions from commercial shipping are presented in Table 5-1.

| Contaminant       | Tonnes / Year 2001 |
|-------------------|--------------------|
| СО                | 68                 |
| NO <sub>x</sub>   | 477                |
| SO <sub>2</sub>   | 390                |
| PM <sub>10</sub>  | 58                 |
| PM <sub>2.5</sub> | 54                 |
| VOC               | 23                 |
| Acetaldehyde      | 0.8                |
| Benzene           | 0.4                |
| 1,3-butadiaene    | 0.4                |
| Formaldehyde      | 2                  |
| CO <sub>2</sub>   | 27925              |

#### **Table 5-1 Emissions for Commercial Shipping (Tauranga)**

#### 5.1.2 Motor Vehicles

The total vehicle kilometres travelled for the Region was estimated at about 2,200 million kilometres for 2001. This compares to the figure for 1996 reported by OPUS of nearly 2000 million kilometres. This is an increase in VKTs of about 11% compared to a population increase of 6.7%. The emissions estimates are presented in Table 5-2.

Dioxin emission using UNEP emission factors were 22.8 mg I-TEQ per year , which is within the range of 3.3 to 50.4 mg I-TEQ using emission factors from MfE.

Final Report

|              | Formaldehyde       | 0.8          | 9.4         | 15.6     | 12.8           | 8.1       | 0.9     | 2.1     | 49.8                |
|--------------|--------------------|--------------|-------------|----------|----------------|-----------|---------|---------|---------------------|
|              | 1,3-<br>Butadiaene | 0.2          | 2.2         | 3.6      | 2.9            | 1.9       | 0.2     | 0.5     | 11.4                |
|              | Acetaldehyde       | 0.9          | 9.7         | 16       | 13.1           | 8.3       | 0.9     | 2.1     | 51                  |
| er) 2001     | Benzene            | 2            | 22          | 36       | 30             | 19        | 7       | 5       | 115                 |
| (Tonnes / Ye | CO <sub>2</sub>    | 19769        | 195178      | 197052   | 198015         | 140921    | 11220   | 45932   | 808088              |
| missions     | DOV                | 34           | 376         | 624      | 511            | 324       | 35      | 83      | 1987                |
| Ē            | SO <sub>2</sub>    | 12           | 115         | 116      | 117            | 83        | 7       | 27      | 477                 |
|              | NOX                | 119          | 1175        | 1215     | 1207           | 855       | 69      | 276     | 4916                |
|              | 00                 | 249          | 2670        | 3909     | 3352           | 2188      | 219     | 603     | 13190               |
|              | PM <sub>2.5</sub>  | 5            | 44          | 44       | 45             | 32        | З       | 10      | 183                 |
|              | PM <sub>10</sub>   | 8            | 74          | 74       | 75             | 53        | 4       | 17      | 305                 |
| 2001 VKTs    | (000'000)          | 53.7         | 530.6       | 535.7    | 538.3          | 383.1     | 30.5    | 124.9   | 2,196.7             |
|              | District           | Taupo (part) | Western BOP | Tauranga | Rotorua (part) | Whakatane | Kawerau | Opotiki | <b>Region Total</b> |

## Table 5-2 Annual Emissions from Motor Vehicles

## Table 5-3 : Annual Emissions from Rail Transport

|                     |                         |                   |      |     | Emi             | issions (Tor | ines / Year)    | 2001    |              |                    |              |
|---------------------|-------------------------|-------------------|------|-----|-----------------|--------------|-----------------|---------|--------------|--------------------|--------------|
| District            | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | CO   | NOX | SO <sub>2</sub> | VOC          | CO <sub>2</sub> | Benzene | Acetaldehyde | 1,3-<br>Butadiaene | Formaldehyde |
| Western BOP         | 4.6                     | 4.2               | 18   | 184 | 8.7             | 6.8          | 6707            | 0.11    | 1.95         | 0.10               | 0.58         |
| Tauranga            | 2.2                     | 2.0               | 8.8  | 89  | 4.2             | 3.3          | 3251            | 0.06    | 0.95         | 0.05               | 0.28         |
| Rotorua (part)      | 0.0                     | 0.0               | 0.1  | 1.3 | 0.1             | 0.1          | 46              | 0.00    | 0.01         | 0.00               | 0.00         |
| Kawerau             | 0.1                     | 0.1               | 0.5  | 4.7 | 0.2             | 0.2          | 170             | 0.00    | 0.05         | 0.00               | 0.01         |
| Whakatane           | 6.1                     | 5.6               | 24.3 | 247 | 11.6            | 9.1          | 8999            | 0.15    | 2.62         | 0.14               | 0.77         |
| <b>Region Total</b> | 13.1                    | 12.0              | 52   | 526 | 24.8            | 19           | 19173           | 0.32    | 5.57         | 0.30               | 1.65         |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

#### 5.1.3 Rail

The Region has an active rail network linking the main trunk line to the major Port in Tauranga and servicing the forestry industry in Whakatane District. The Rotorua Line is now mothballed but did operate for part of 2001. The emission estimates for rail movements are presented in Table 5-3. Fuel consumption data was estimated by the rail model at 7,384,000 litres. Fuel consumption estimates were used to calculate dioxin emissions giving an emission of 3.1 mg I-TEQ per annum.

#### 5.1.4 Aircraft

The Region has three airports located at Tauranga, Rotorua and Whakatane. Tauranga airport has the most aircraft movements, but many of them are for general aviation. Rotorua and Tauranga have similar levels of domestic movement. The predicted emissions for both general aviation and domestic activity are presented in Table 5-4. All  $PM_{10}$  was assumed to be  $PM_{2.5}$ .

The contribution of  $CO_2$  was estimated from the NZGHGI based on the Region having 6.7% of New Zealand's population.  $CO_2$  was estimated at 56,494 tonnes although this is likely to be an over estimate because aircraft movements are unlikely to be directly proportional to population. The Region does not have international flights, which are expected to contribute significantly to New Zealand's total  $CO_2$  emission. If the data is available in future, it may be preferable to prorate the emission based on the quantity of aviation gas from refuelling, compared with national consumption. Such an approach would be consistent with the IPCC approach, which allocates a country's emissions on the basis of point of fuel supply.

#### 5.2 Industrial Sources

Industries included in the inventory included major combustion sources, pulp and paper, dairy and asphalt plants. Estimated emissions from industry are presented in Table 5-5.

Spray painting emissions estimated by extrapolating data from the Nelson Inventory (2001) gave an estimate for VOC emissions of around 85 tonnes per year, however, VOCs from spray painting are already accounted for in the methodologies for domestic and commercial emissions so were not included in order to avoid double counting. Industrial VOC emissions were not specifically investigated as part of the study of Environment Bay of Plenty's resource consent information or the industrial survey. Therefore, the VOC estimates are from combustion sources only. Industrial VOC use such as solvents is also accounted for in the per capita estimates under domestic and commercial use.

| t        | 2 |
|----------|---|
| (        | D |
| <u>د</u> | 2 |
| 0        | D |
| ٥        | 2 |
| 6        | 0 |
| 5        | _ |
| iï       | _ |

|              | Activity d | ata LTOs |                         |                   |     |     |                 | Tonne | s / Year 2001 |         |                    |              |
|--------------|------------|----------|-------------------------|-------------------|-----|-----|-----------------|-------|---------------|---------|--------------------|--------------|
| District     | 1996       | 2001     | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | S   | NOX | SO <sub>2</sub> | VOC   | Acetaldehyde  | Benzene | 1,3-<br>Butadiaene | Formaldehyde |
| Tauranga     | 23947      | 36902    | 48                      | 48                | 44  | 258 | 0.1             | 27    | 1.3           | 0.5     | 0.5                | 4            |
| Rotorua      | 18691      | 14499    | 15                      | 15                | 46  | 91  | 0.1             | 25    | 1.2           | 0.5     | 0.5                | 4            |
| Whakatane    | 2387       | 2595     | 7                       | 0                 | 13  | 15  | 0.0             | 7     | 0.3           | 0.1     | 0                  | <del></del>  |
| Region Total | 45025      | 53996    | 65                      | 65                | 103 | 363 | 0.2             | 59    | 2.8           | 1.1     | ۱                  | 6            |

## Table 5-4 Activity Data and Emissions from Aircraft

## Table 5-5 Annual Emissions from Industry

|                       |                         |                   |      |     |                 | onnes / Yea | r 2001          |              |         |              |
|-----------------------|-------------------------|-------------------|------|-----|-----------------|-------------|-----------------|--------------|---------|--------------|
| DISUICI               | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | 8    | NOx | SO <sub>2</sub> | VOC         | CO <sub>2</sub> | Acetaldehyde | Benzene | Formaldehyde |
| Taupo (part)          | 80                      | 2                 | 0    | 0   | 0               | 0           | 0               | 0.0          | 0       | 0            |
| Western Bay of Plenty | 354                     | 183               | 304  | 36  | 35              | 7           | 51462           | 0.0          | 0       | 0            |
| Tauranga              | 46                      | 31.5              | 18   | 15  | 745             | 2           | 23367           | 0.0          | 10      | 0.1          |
| Rotorua (part)        | 567                     | 456               | 1124 | 141 | 127             | 26          | 215158          | 0.0          | 2       | 0.02         |
| Kawerau               | 249                     | 161               | 2450 | 308 | 9               | 55          | 34653           | 0.0          | 0       | 0.4          |
| Whakatane             | 145                     | 81                | 154  | 43  | 19              | 5           | 86932           | 0.0          | 0       | 0.04         |
| Opotiki               | 0                       | 0                 | 0    | 0   | 0               | 0           | 0               | 0.0          | 0       | 0            |
| Region Total          | 1369                    | 914               | 4050 | 543 | 932             | 95          | 411571          | 0.0          | 12      | 0.6          |
|                       |                         |                   |      |     |                 |             |                 |              |         |              |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

Final Report

|                       |                         |                   |     | Tonnes / | Year 2001       |     |                 |         |
|-----------------------|-------------------------|-------------------|-----|----------|-----------------|-----|-----------------|---------|
| District              | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | CO  | NOX      | SO <sub>2</sub> | VOC | co <sub>2</sub> | Benzene |
| Taupo (part)          | 0                       | 0                 | ~   | 0        | 0.0             | 0   | 19              | 0.0     |
| Western Bay of Plenty | 34                      | 31                | 113 | 8        | 1.3             | 12  | 3950            | 1.3     |
| Tauranga              | 85                      | 79                | 284 | 20       | 3.4             | 29  | 9953            | 3.4     |
| Rotorua (part)        | 52                      | 48                | 174 | 12       | 2.1             | 18  | 6073            | 2.1     |
| Kawerau               | 28                      | 26                | 92  | 7        | 1.1             | 6   | 3236            | 1.1     |
| Whakatane             | 9                       | 5                 | 19  | ~        | 0.2             | 2   | 657             | 0.2     |
| Opotiki               | ø                       | 7                 | 26  | 2        | 0.3             | 3   | 908             | 0.3     |
| Region Total          | 211                     | 197               | 708 | 13       | 7.8             | 23  | 24797           | 8.4     |

# Table 5-6 Annual Emissions from Backyard Burning

## Table 5-7 Annual Emissions from Domestic Heating

| Dietrict              |                         |                   |      | Tonnes / ) | Year 2001       |      |                 |         |
|-----------------------|-------------------------|-------------------|------|------------|-----------------|------|-----------------|---------|
|                       | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | 00   | NOX        | SO <sub>2</sub> | VOC  | CO <sub>2</sub> | Benzene |
| Taupo (part)          | 0.4                     | 0.3               | З    | 0.0        | 0.0             | ~    | 74              | 0.0     |
| Western Bay of Plenty | 76                      | 71                | 702  | 6.6        | 3.2             | 200  | 15117           | 6.7     |
| Tauranga              | 193                     | 179               | 1770 | 16.7       | 8.0             | 504  | 38096           | 16.9    |
| Rotorua (part)        | 117                     | 109               | 1080 | 10.2       | 4.9             | 308  | 23246           | 10.3    |
| Kawerau               | 63                      | 58                | 576  | 5.4        | 2.6             | 164  | 12386           | 5.5     |
| Whakatane             | 13                      | 12                | 117  | 1.1        | 0.5             | 33   | 2515            | 1.1     |
| Opotiki               | 18                      | 16                | 161  | 1.5        | 0.7             | 46   | 3475            | 1.5     |
| Region Total          | 480                     | 447               | 4410 | 41.7       | 20.1            | 1256 | 94910           | 42.1    |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

|                          |                  |                   |     |     |                 | F   | ۲ / Sennes      | 'ear 2001    |         |                |              |
|--------------------------|------------------|-------------------|-----|-----|-----------------|-----|-----------------|--------------|---------|----------------|--------------|
| DISILICI                 | PM <sub>10</sub> | PM <sub>2.5</sub> | CO  | NOX | SO <sub>2</sub> | VOC | <sup>z</sup> O2 | Acetaldehyde | Benzene | 1,3-Butadiaene | Formaldehyde |
| Taupo (part)             | 0.0              | 0.0               | 0.4 | 0.0 | 0.0             | 0.1 | 2               | 0.1          | 0.4     | 0.2            | 0.2          |
| Western Bay of<br>Plenty | 0.4              | 0.3               | 72  | 0.6 | 0.02            | 16  | 377             | 16           | 82      | 49             | 33           |
| Tauranga                 | 1.1              | 0.8               | 182 | 1.4 | 0.04            | 41  | 949             | 41           | 207     | 124            | 83           |
| Rotorua (part)           | 0.7              | 0.5               | 111 | 0.9 | 0.02            | 25  | 579             | 25           | 126     | 76             | 51           |
| Kawerau                  | 0.4              | 0.3               | 59  | 0.5 | 0.01            | 14  | 309             | 13           | 67      | 40             | 27           |
| Whakatane                | 0.1              | 0.1               | 12  | 0.1 | 0.003           | e   | 63              | 3            | 14      | ω              | 9            |
| Opotiki                  | 0.1              | 0.1               | 17  | 0.1 | 0.004           | 4   | 87              | 4            | 19      | 11             | 8            |
| Region Total             | 2.8              | 2.0               | 454 | 3.6 | 0.1             | 103 | 2365            | 103          | 516     | 310            | 207          |

## Table 5-8 Annual Emissions from Lawn Mowing

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

Version 2 PAGE 33

Dioxins from industrial combustion sources are estimated at 376 mg I-TEQ per year. The metallurgical industry was not able to be included because in the dioxin estimates because information from the Ministry for the Environment's study of the secondary metal<sup>13</sup> industry was not available at the time of writing.

#### 5.3 Domestic and Commercial Sources

Results for annual emissions from backyard burning, domestic home heating (wood, coal and gas) and lawn mowing are presented in Table 5-7, and Table 5-8 respectively.

Regional emissions of dioxin from backyard burning ranged from 159 to 1861 mg I-TEQ per year. These figures were obtained using the same factors as used in the national inventory, but a higher activity rate, as discussed in section 3.2.4.2. By comparison, the total national emissions given in the national inventory were 540 to 6400 mg I-TEQ per year. Calculations using the UNEP (2001) factor for uncontrolled domestic waste burning of 300  $\mu$ g TEQ per tonne gives a higher emission rate of 5000 mg I-TEQ per year.

Lawn-mower emissions have been estimated. They are a minor contributor to classical air pollutant emissions, although they appear to contribute significantly to emissions of hazardous air pollutants.

Non-methane VOCs from domestic and commercial sources are estimated on a population basis using factors from the NZGHGI. The results are presented in Table 5-9.

| District                       | NMVOC<br>(Tonnes / Year) |
|--------------------------------|--------------------------|
| Taupo District (part)          | 2                        |
| Western Bay of Plenty District | 372                      |
| Tauranga District              | 885                      |
| Rotorua District (part)        | 594                      |
| Whakatane                      | 319                      |
| Kawerau District               | 68                       |
| Opotiki District               | 90                       |
| Region Total                   | 2,329                    |

#### **Table 5-9 Domestic and Commercial Solvent Emissions**

<sup>&</sup>lt;sup>13</sup>The Ministry for the Environment commissioned a study in 2002 to develop activity data and emission factors from the secondary metals industry in New Zealand. This report is expected to be published in September 2003.
SINCLAIR KNIGHT MERZ

The estimate for spray painting operations based on a per site emission rate developed from Nelson data was 85 tonnes per year. This is included in the aggregated emissions calculated above and has not been accounted for separately as discussed elsewhere.

#### 5.4 Waste

The estimated emissions from landfills and wastewater are presented in Table 5-10. Landfills in the Bay of Plenty are located at Athenree, Murupara, Whakatane and Rotorua. Currently, no landfills in the Region have gas collection but Whakatane and Rotorua are considering options for gas management systems<sup>14</sup>. The total waste going to landfill in the Region is 151,000 tonnes per annum, which results in a methane emission of 7000 tonnes per year, or about 4.5% of the national gross total methane emission for 2001 without collection and flaring.

#### Table 5-10 GHG Emissions from Municipal Landfills and Waste Water Treatment Plants (WWTPs)

|             | Tonnes / Year |                  |                 |                 |         |
|-------------|---------------|------------------|-----------------|-----------------|---------|
| District    | WWTPs         |                  | Landfills       |                 |         |
|             | CH₄           | N <sub>2</sub> O | CH <sub>4</sub> | CO <sub>2</sub> | Benzene |
| Kawerau     | 0             | 0.006            | 0               | 0               | 0       |
| Opotiki     | 0.08          | 0.003            | 270             | 213             | 0.00    |
| Rotorua     | 0             | 0.037            | 1791            | 1410            | 0.02    |
| Tauranga    | 7.9           | 0.056            | 2667            | 2101            | 0.02    |
| Western BOP | 0.5           | 0.010            | 1122            | 883             | 0.01    |
| WDC         | 4.4           | 0.016            | 1167            | 919             | 0.01    |
| Taupo       | 0             | 0                | 0               | 0               | 0.00    |
| Region      | 13.0          | 0.129            | 7018            | 5526            | 0.06    |

#### 5.5 Biogenic Emissions

Total  $NO_x$  emission from biogenic sources is estimated at over 1,300 tonnes per annum. This could be prorated for each district on the basis of land area as a first approximation but may be of limited value, for example for Kawerau District, which is largely urban.

The total VOC emission from biogenic sources is estimated at 41,557 tonnes per annum. Biogenic methane, CO and  $N_2O$  were not estimated.

<sup>&</sup>lt;sup>14</sup> *pers com.* Glenn Wigley, Ministry for the Environment, January 2003 SINCLAIR KNIGHT MERZ



#### 5.6 Agriculture and Forestry

#### 5.6.1 Livestock and Agriculture

The estimated emissions from agriculture based on NZGHGI methodologies are presented in Table 5-11.

#### **Table 5-11 Agricultural Source GHG Emissions for Bay of Plenty**

| Source                                                             | Tonnes / Year (2001) |                  |     |      |
|--------------------------------------------------------------------|----------------------|------------------|-----|------|
|                                                                    | Methane              | N <sub>2</sub> O | СО  | NOx  |
| Livestock enteric fermentation and manure management               | 45100                | 6                | -   | -    |
| Agricultural soils (nitrogen from synthetic fertiliser and manure) | -                    | 17330            | -   | -    |
| Field burning of agricultural residues                             | 19                   | 0.6              | 395 | 21.3 |
| Total                                                              | 45119                | 17337            | 395 | 21.3 |

#### 5.6.2 Pollen

Pollen estimates for exotic forestry plantations are provided in Table 5-12. The pollen production season is July to August. Taupo and Whakatane Districts have the most significant areas of forestry.

#### ■ Table 5-12 Pollen from Exotic Forestry

| District              | Exotic timber per district year 3 – 30<br>plantings ha (2001) | Pollen (Tonnes / Year) |
|-----------------------|---------------------------------------------------------------|------------------------|
| Taupo (part)          | 96,839                                                        | 19,368                 |
| Rotorua (part)        | 28,185                                                        | 5,637                  |
| Whakatane             | 115,399                                                       | 23,080                 |
| Western Bay of Plenty | 26,365                                                        | 5,273                  |
| Opotiki               | 18,870                                                        | 3,774                  |
| Kawerau               | 28                                                            | 5.6                    |
| Region total          | 285,686                                                       | 57,137                 |



#### 5.6.3 Pesticides and Fertiliser

The estimated level of pesticide use is reported in Table 5-13. Estimates of pesticide use were not made for the 1996 inventory, although reference was made to an earlier report which provided rough estimates for 1985-1988. Comparison with these figures shows that the latest MAF application rate data are an order of magnitude higher than the earlier study. The more recent estimates are expected to be more reliable than the earlier data, which was based on a partial survey of only some sectors. MAF indicates that pesticide use has been on the decline in recent years, as discussed in section 3.2.5 of this Report. Herbicide use is predominant at about 75% of all pesticide use.

| Land uso       | Pesticide Use by Active Ingredient (Tonnes / Year) |            |                      |        |  |
|----------------|----------------------------------------------------|------------|----------------------|--------|--|
|                | Insecticides                                       | Herbicides | Synthetic fungicides | Total  |  |
| Arable farming | 1.1                                                | 10.6       | 0.02                 | 11.7   |  |
| Horticulture   | 71.6                                               | 66.3       | 4.7                  | 172.6  |  |
| Vegetables     | 0.8                                                | 3.2        | 8.1                  | 12.1   |  |
| Pastoral       | 756.9                                              | 4202.7     | 0                    | 4959.6 |  |
| Forestry       | 698.2                                              | 1607.2     | 328.6                | 2634.0 |  |
| Total          | 1528.5                                             | 5890       | 371.4                | 7790   |  |

#### Table 5-13 Annual Pesticide Use Bay of Plenty

Fertiliser suppliers were unwilling to provide data on fertiliser sales as discussed in section 3.2.5.2 of this Report. Although fertiliser nutrient application rate data was used to estimate the emissions of N<sub>2</sub>O as reported above.

#### 5.6.4 Agricultural Burning

Information received from the territorial authorities and rural fire officers regarding agricultural burning in the Region for 2001 are summarised in Table 5-14.

There is insufficient data to provide reasonable estimates of emissions from agricultural burning.

The methods used to estimate GHG emissions from agriculture in the NZGHGI include methods for estimating CO and NO<sub>x</sub> as reported above in section 5.6.1. The estimate for CO placed field burning of agricultural residues at 2% of total CO and NO<sub>x</sub> at less than 0.3%.



| District              | Comment                                                                                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Taupo (part)          | One consent for Fletcher Challenge for burning windrows (expired 2002)                                                                                                                        |
| Rotorua (part)        | Forestry companies are using burning very infrequently, only if there is a lot of slash left behind, nothing major occurred in 2001. The last major burns were reportedly about 10 years ago. |
| Whakatane             | The number of fire permits can be provided but staff have no idea of quantity.<br>Generally a declining method, mainly for general rubbish, tree prunings, stumps<br>and straw.               |
| Tauranga              | The District Council does not burn for reserve clearing and has no other applicable information.                                                                                              |
| Western Bay of Plenty | No indication of conditional burning.                                                                                                                                                         |
| Opatiki               | 10 hectares planned.                                                                                                                                                                          |
| Ороцкі                | 100 hectares unplanned.                                                                                                                                                                       |
| Kawerau               | No data                                                                                                                                                                                       |

#### Table 5-14 Agricultural Burning Responses

#### 5.7 Geothermal

The Bay of Plenty has an extensive variety of geothermal resources that cover the Taupo volcanic zone to White Island. Emissions of naturally occurring  $H_2S$  are emitted with steam as a result of volcanic and geothermal activity. The geothermal resources of the Region are summarised in the Environment Bay of Plenty state of the environment report (2001) and in a recent report on regional groundwater resources (2002).

Some research on emissions from geothermal sources has been conducted but the results vary by several orders of magnitude, and are therefore difficult to extrapolate to all sources.

Data for the land area of the fields and temperatures exist, and so reasonable estimates of the heat flux can be made. It is possible that this could be related to  $H_2S$  emissions by making informed estimates as to the relationship. A methodology for determining surface heat per m<sup>2</sup> could be used to crudely estimate the surface flux, which then could be used to estimate a flux of emissions. However, the costs involved in doing this work precluded it from inclusion in the inventory.

At this stage there is insufficient data to estimate naturally occurring H<sub>2</sub>S in the Region.

### 6. Data Summaries and Analysis

Summary tables for all data reported by contaminant and district for each source category are provided in Appendix B. Key summaries are provided below. There may be apparent addition errors from rounding used to present the numbers.

#### 6.1 Primary Contaminants

| Source Category               | Tonnes / Year           |                   |       |                 |                 |
|-------------------------------|-------------------------|-------------------|-------|-----------------|-----------------|
|                               | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | СО    | NO <sub>x</sub> | SO <sub>2</sub> |
| Transport                     | 441                     | 313               | 13412 | 6282            | 891             |
| Domestic                      | 693                     | 646               | 5573  | 96              | 29              |
| Industrial                    | 1369                    | 914               | 4050  | 543             | 932             |
| Biogenic                      | NA                      | NA                | NA    | 1301            | NA              |
| Agricultural field<br>burning | NA                      | NA                | 395   | 21              | NA              |
| Total                         | 2503                    | 1873              | 23430 | 8243            | 1852            |

#### Table 6-1 Total Annual Emissions for Primary Contaminants 2001

Pie charts for the percentage contribution of various sources for each contaminant are presented in Figure 6-1 to Figure 6-3.

#### ■ Figure 6-1 Annual and Wintertime PM<sub>10</sub>



For  $PM_{10}$  the major source on an annual basis appears to be industry. Within industry the major contributors are the wood fired combustion sources and the wood processing industry at 80% of emissions. Quarries are also significant, and estimated to contribute 16% of  $PM_{10}$ . It is likely that emission factors may be unduly conservative for both of these sources in particular the factor used for storage and handling of materials at quarries is 0.15 kg per tonne. For wood fired boiler plant for Carter Holt Harvey Tasman, emission calculated using emission factors were 4 times those from the measurement data, therefore the factors are also may be over estimating other industrial sources.

In wintertime the domestic sector predominates  $PM_{10}$  emissions due to domestic heating, although backyard burning and lawn mowing emissions reduce over this time.

Pollen is generally not in the respirable ( $PM_{10}$ ) fraction so has not been included in the totals for particulate matter. Pollen is estimated to contribute about 57,000 tonnes of particulate matter per annum, but this occurs over a period of a few weeks in late winter. The contribution of pollen is considerably larger than the total  $PM_{10}$  fraction from all other sources. The districts with the major contribution to pollen from exotic forestry are Whakatane and Taupo.

There was little data available for  $PM_{2.5}$  contributions from industry for non-combustion sources. An assumption was made that much of the PM from wood processing and quarries would not contain  $PM_{2.5}$ . Overall however,  $PM_{2.5}$  shows a similar distribution to  $PM_{10}$  with domestic sources contributing a proportionately higher level of  $PM_{2.5}$ .

#### Field burning Industrial Transport 2% 17% 17% Industrial 49% Domestic Transport 24% 57% Domestic 34% PM<sub>2.5</sub> CO

#### ■ Figure 6-2 Annual PM<sub>2.5</sub> and CO Sources

Carbon monoxide and nitrogen oxide emissions are both dominated by transport. Data for seasonal variation of these sources is not available, but there is likely to be some increase in the motor vehicle traffic and emissions over summer because the Region is a summer holiday destination. Domestic sources are a reasonably large contributor to carbon monoxide and this contribution would increase over the winter months as for particulate matter from domestic combustion.

The domestic sector contributes very little  $SO_2$ . The majority of the  $SO_2$  from the transport sector is from shipping activities in the port of Tauranga. Likewise, the majority of the industrial  $SO_2$  emission comes from two industrial sites located in the Mt Maunganui industrial area.



#### Figure 6-3 Annual NO<sub>x</sub> and SO<sub>2</sub>Sources

#### 6.2 Hazardous Air Pollutants

A summary for the annual emissions of hazardous air pollutants is presented in Table 6-2. Biogenic emissions from vegetation predominate total VOC emissions. This is due to very large forestry plantations and significant areas of indigenous planting in the Region. The domestic sector (lawnmowing only) appears to dominate the emissions of hazardous air pollutants. This contribution would increase further if estimates were available for domestic home heating and backyard burning.

| Source Category         | Tonnes / Year |                  |         |                  |                  |
|-------------------------|---------------|------------------|---------|------------------|------------------|
| Source Category         | VOC           | Acetaldehyde     | Benzene | Formaldehyde     | 1-3 Butadiene    |
| Transport               | 2089          | 60               | 117     | 63               | 13               |
| Domestic and commercial | 3761          | 103 <sup>#</sup> | 567     | 206 <sup>#</sup> | 310 <sup>#</sup> |
| Industrial (combustion) | 95            | 0.001            | 12      | 2                | NA               |
| Biogenic/waste          | 41557         | NA               | 0.06    | NA               | NA               |
| Total                   | 47502         | 163              | 696     | 271              | 323              |

#### Table 6-2 Total Annual Emissions for Hazardous Air Pollutants 2001

\*includes industrial use of solvents

<sup>#</sup> lawn mowing only

#### 6.3 Dioxin Emissions

Regional dioxin emissions are summarised in Table 6-3. Domestic combustion and particularly backyard burning dominate the emissions at 5061 mg I-TEQ. Backyard burning estimates were made using the UNEP dioxin emission factor for of 300  $\mu$ g I-TEQ per tonne. This compares with the weighted average range from the New Zealand Dioxin Inventory of 9 to 110  $\mu$ g I-TEQ per tonne for domestic and organic waste. The uncertainty associated with this emission factor has a large effect on predicted total emissions. Using the upper factor from MfE, dioxin emissions would be about one third of that estimated below. The estimates are based on UNEP emission factors, based on advice from the Ministry for the Environment, discussed previously.

#### Table 6-3 Total Annual Dioxin Emissions

| Source Category                             | Emission Range (mg TEQ per year) |
|---------------------------------------------|----------------------------------|
| Transport (excluding aviation and shipping) | 26                               |
| Domestic (excluding lawn mowing)            | 5,365                            |
| Industrial                                  | 376                              |
| Total                                       | 5,765                            |

#### 6.4 Greenhouse Gases

Total annual carbon dioxide emissions are estimated at 1.4 million tonnes. The transport sector contributes over 60% of the  $CO_2$ . Industry contributes just over 30% of the regional  $CO_2$  emission. The contributions to total  $CO_2$  are shown in Figure 6-4.

#### **Table 6-4 Total Annual CO<sub>2</sub> Emissions (2001)**

| Source Category | Emission Tonnes / Year |
|-----------------|------------------------|
| Transport       | 911,680                |
| Domestic        | 122,072                |
| Industrial      | 411,571                |
| Waste           | 5,526                  |
| Total           | 1,450,849              |

#### ■ Figure 6-4 Annual CO<sub>2</sub> Source Contributions



 $N_2O$  was estimated from wastewater, livestock agricultural burnoff, and agricultural soils based on methods from the NZGHGI. Factors for other potential sources of  $N_2O$  such as biogenic emissions were not available.  $N_2O$  estimates are therefore dominated by agricultural soil emissions. The data is presented in Table 6-5. Emissions of methane are dominated by livestock.

#### **Table 6-5 Total Annual N<sub>2</sub>O and Methane Emissions (Tonnes/year)**

| Source                                                             | N <sub>2</sub> O | CH₄   |
|--------------------------------------------------------------------|------------------|-------|
| Landfills                                                          | 0                | 7018  |
| Wastewater treatment                                               | 0.13             | 13    |
| Livestock enteric fermentation and manure management               | 5.9              | 45077 |
| Agricultural soils (nitrogen from synthetic fertiliser and manure) | 17330            | 0     |
| Field burning of agricultural residues                             | 0.6              | 18.8  |
| Total                                                              | 17337            | 52127 |

Methane from waste (landfills and wastewater) is equivalent to 147,000 tonnes per annum of  $CO_2$  based on a global warming potential for methane of 20 compared to 1 for  $CO_2$ .

#### 6.5 Urban Area Contributions

All data for urban area contributions for each pollutant is provided in Appendix A. The contributions of the common air pollutants are illustrated in the following figures. The percentage urban area contributions for the common air pollutants are very similar to that for the 1997 inventory. The urban contribution for  $NO_x$  has decreased slightly in percentage terms because of the inclusion of biogenic  $NO_x$ .



#### Figure 6-5 Urban Carbon Monoxide Contribution





#### Figure 6-6 Annual Urban PM<sub>10</sub> Contribution

#### Figure 6-7 Urban Nitrogen Oxide Contribution







#### Figure 6-8 Urban Sulphur Dioxide Contribution



### 7. Comparison with 1996

7.1 Transport

#### 7.1.1 Shipping

For the 2001 calendar year 1259 ships entered the Port of Tauranga with an average berthing time of 1.5 days and an annual average gross registered tonnage<sup>15</sup> of 17,800. This compares to 1052 ships with an average length of stay of 1.62 days reported for 1996.

Commercial shipping data for 1996 were used with the EET emission factors used for 2001 to backcast emissions for shipping. The change to the EET factors from the WHO factors used in 1996 was useful because they are more comprehensive in terms of pollutants covered. The results for 1996 and 2001 using the EET emission factors are presented in Table 7-1 and compared to the predictions using WHO.

| Contominant     | Tonnes / Year                |          |          |  |
|-----------------|------------------------------|----------|----------|--|
| Containinant    | 1996 WHO (Table 8 OPUS 1997) | 1996 EET | 2001 EET |  |
| со              | 0.06                         | 61       | 68       |  |
| NO <sub>x</sub> | 154.6                        | 419      | 477      |  |
| SO <sub>2</sub> | 695.3                        | 343      | 390      |  |
| PM (total)      | 11.6                         | 52       | 58       |  |

#### Table 7-1 Commercial Shipping Backcast Results

In 1996, 50% of the ship emissions were included in the contribution to the Tauranga urban area. In 2001, the emissions from the auxiliary engines were included in the urban area contribution because the main engines do not run while in port. The distinction had not been possible with the earlier factors.

As shown in Table 7-1 the estimated emissions for 2001 are significantly different from the 1996 figures. This comes about because of significant differences in the emission factors used in the two calculations. The more recent estimates are believed to be the more reliable, because the WHO factors are very generic and relatively dated, whereas the EET factors are more specific for the types of ships found in Australian ports.

Overall shipping activity has increased by nearly 20%, and there has been a corresponding increase in air emissions, which is slightly offset by the shorter stays in port.

<sup>&</sup>lt;sup>15</sup> For the 12 months to the end of June 2002 SINCLAIR KNIGHT MERZ

#### 7.1.2 Rail

Data of the appropriate format for the MOT model was not available either from the 1996 inventory or from Tranz Rail. Therefore, backcasting the emissions was done using 1998 train movement data as an approximation of the train movements for 1996. A comparison of train movement data is presented in Table 7-2. There appears to have been an increase in rail movements by about 30% overall.

| Movements<br>District Year |                   | Line                                                    | Movements / Year |       |  |
|----------------------------|-------------------|---------------------------------------------------------|------------------|-------|--|
|                            | 1996 <sup>a</sup> |                                                         | 1998             | 2001  |  |
| Tauranga                   | 5475              | East Coast Main Trunk to Tauranga                       | 5512             | 8788  |  |
| Western BOP                | 5475              | East Coast Main Trunk Tauranga to Whakatane and Kawerau | 4056             | 4004  |  |
| Kawerau                    | 365               | Mount Maunganui Line                                    | 8840             | 11128 |  |
| Rotorua                    | 730               | Rotorua                                                 | 1248             | 405   |  |
| Whakatane                  | 1460              | Murupara Line                                           | 2184             | 3744  |  |

#### Table 7-2 Train Movements 1996, 1998 and 2001

Based on daily data estimates provided for the 1996 inventory

|              | Pollutant, Tonnes / Year |      |      |        |      |                       |      |      |  |
|--------------|--------------------------|------|------|--------|------|-----------------------|------|------|--|
| District     | С                        | CO   |      | NOx SC |      | <b>D</b> <sub>2</sub> | Р    | РМ   |  |
|              | 2001                     | 1998 | 2001 | 1998   | 2001 | 1998                  | 2001 | 1998 |  |
| Western BOP  | 18                       | 11   | 184  | 114    | 8.7  | 5.4                   | 4.6  | 2.8  |  |
| Tauranga     | 8.8                      | 6.1  | 89   | 62     | 4.2  | 2.9                   | 2.2  | 1.5  |  |
| Rotorua      | 0.1                      | 1.2  | 1.3  | 12.6   | 0.1  | 0.6                   | 0.0  | 0.3  |  |
| Kawerau      | 0.5                      | 0.2  | 4.7  | 2.4    | 0.2  | 0.1                   | 0.1  | 0.1  |  |
| Whakatane    | 24.3                     | 11.7 | 247  | 119    | 11.6 | 5.6                   | 6.1  | 3.0  |  |
| Region Total | 52                       | 30   | 526  | 310    | 24.8 | 14.6                  | 13   | 8    |  |

#### Table 7-3 Emissions Estimates from the MoT Rail Model for 1998 and 2001

Predictions are generally much higher from the rail model than those estimated for 1996 as reported by OPUS and reproduced in Table 7-4 below. The estimates based on MoT factors are expected to be more realistic than those used in 1996.



| District     | Pollutant, Tonnes / Year |     |                 |     |  |  |  |
|--------------|--------------------------|-----|-----------------|-----|--|--|--|
|              | СО                       | NOx | SO <sub>2</sub> | PM  |  |  |  |
| Western BOP  | 0.1                      | 1.7 | 3.9             | 0.3 |  |  |  |
| Tauranga     | 0.2                      | 2.9 | 4.6             | 0.4 |  |  |  |
| Rotorua      | 0.0                      | 0.2 | 0.5             | 0.0 |  |  |  |
| Kawerau      | 0.0                      | 0.0 | 0.1             | 0.0 |  |  |  |
| Whakatane    | 0.1                      | 1.1 | 2.5             | 0.2 |  |  |  |
| Region Total | 0.4                      | 4.9 | 11.6            | 0.9 |  |  |  |

#### ■ Table 7-4 Emission Estimates from Rail OPUS (1997)

The OPUS 1996 figures were much lower than the estimates from the backcasting mainly because the estimated fuel consumption figures used by OPUS were much lower than those used in the MoT model. The estimates for fuel use given by the respective methodologies are summarised in Table 7-5.

| District     | Litres per day | Annual Fuel Used ('000s L) |                 |                 |  |  |
|--------------|----------------|----------------------------|-----------------|-----------------|--|--|
| District     | 1996 (OPUS)    | 1996 (OPUS)                | 1998 Rail Model | 2001 Rail Model |  |  |
| Western BOP  | 208            | 76                         | 1595            | 2583            |  |  |
| Tauranga     | 246            | 90                         | 875             | 1252            |  |  |
| Rotorua      | 24             | 9                          | 177             | 18              |  |  |
| Kawerau      | 6              | 2                          | 34              | 65              |  |  |
| Whakatane    | 132            | 48                         | 1673            | 3466            |  |  |
| Region Total | 616            | 225                        | 4353            | 7384            |  |  |

#### Table 7-5 Fuel Use Estimates for Rail 1996, 1998 and 2001

#### 7.1.3 Aircraft

Data for aircraft movements for both 2001 and 1996 was available from a report on Regional Airport Requirements (McGregor 2002) for both general aviation movements and domestic aviation movements. This data was used in preference to data that had been collected by OPUS for 1996 and Sinclair Knight Merz for 2001 directly from airport managers, although there was reasonable agreement between the OPUS data and that supplied in the McGregor report for 1996. The data shows an overall increase in air movements of about 20%.

The EET emission factors are considered a reasonable approach given the breakdown of factors for domestic and general aviation and the speciation of VOCs as compared to methods used by OPUS that require identification of emission factors for each aircraft type in the fleet. The figures for

1996 have been recalculated on the basis of the McGregor data and the EET methodologies. A comparison of the LTO data is provided in Table 7-6.

#### Table 7-6 Total Aircraft LTOs for 1996 and 2001

| Airport        | 1996 (OPUS) | LTOs 1996 (McGregor) | LTOs 2001 (McGregor) |
|----------------|-------------|----------------------|----------------------|
| Tauranga       | 24874       | 23947                | 36902                |
| Rotorua        | 17674       | 18691                | 14499                |
| Whakatane      | 2414        | 2387                 | 2595                 |
| Regional Total | 44962       | 45025                | 53996                |

A comparison of the estimated emissions from 1996 and recalculated emissions using the data from McGregor with the EET methodology is provided in Table 7-7. The emission factors between the years are very different, however, a comparison cannot be made because the calculations (emission factors) from 1996 were not available.

#### Table 7-7 Total Aircraft Emissions 1996 and 2001

| Data Source         | Tonnes / Year |     |                 |    |  |  |
|---------------------|---------------|-----|-----------------|----|--|--|
|                     | СО            | NOx | SO <sub>2</sub> | РМ |  |  |
| 2001 (EET/McGregor) | 103           | 363 | 0.2             | 66 |  |  |
| 1996 (EET/McGregor) | 89            | 301 | 0.2             | 55 |  |  |
| 1996 (OPUS)         | 569           | 20  | 0.1             | 0  |  |  |

#### 7.1.4 Motor Vehicles

Motor vehicle estimates for 2001 saw an increase in the overall VKTs for the Region. VKTs were 2,196,786,000 for 2001 compared with 1,975,400,000 for 1996, which suggests there has been about a 11% increase in vehicle movements compared to a population increase of 6.7%. As discussed earlier in the report there are limitations in the availability of VKT data. An improvement in data availability may be responsible for some of the apparent increase in VKTs.

The VKT data for 2001 and 1996 on a per district basis is given in Table 7-9.

#### Table 7-8 VKT data per District 1996 and 2001

| District                       | VKT per annum ( |         |          |
|--------------------------------|-----------------|---------|----------|
| District                       | 1996 (OPUS)     | 2001    | % change |
| Taupo District (part)          | 47.1            | 53.7    | 14.1     |
| Western Bay of Plenty District | 390             | 530.6   | 36.0     |
| Tauranga District              | 513.3           | 535.7   | 4.4      |
| Rotorua District (part)        | 624.4           | 538.3   | -13.8    |
| Whakatane                      | 302.5           | 383.1   | 26.6     |
| Kawerau District               | 15.4            | 30.5    | 98.1     |
| Opotiki District               | 82.7            | 124.9   | 51.0     |
| Total                          | 1,975.4         | 2,196.8 | 11.2     |

Table 7-9 provides a comparison of emissions for 2001 with the estimates for 1996 using both the OPUS results and 1996 emission factors from the VFECs model.

#### Table 7-9 Total Motor Vehicle Emission 1996 and 2001

| Data Source         | Tonnes / Year |       |                 |     |  |  |
|---------------------|---------------|-------|-----------------|-----|--|--|
| Data Source         | СО            | NOx   | SO <sub>2</sub> | РМ  |  |  |
| 2001 (VFECs/Nelson) | 13190         | 4916  | 477             | 305 |  |  |
| 1996 (VFECs/Nelson) | 14561         | 5209  | 429             | 360 |  |  |
| 1996 (OPUS)         | 16280         | 10014 | 460             | 442 |  |  |

The comparison between the results backcast for 1996 using VFECs factors for 1996 with the 2001 shows that improvement in technology has offset the increase in VKTs between the two inventories. The main difference between the OPUS estimates and the VFECs methodology is the use of different factors and the weightings put on heavy diesel vehicles in 1996 as compared to 2001 which has been discussed elsewhere.

#### 7.2 Domestic Heating Emissions

The population of the Region has increased by 6.7% from 1996 to 2001. Annual emissions from domestic heating are summarised in Table 7-10. The OPUS estimates were based on estimates of fuel consumption for domestic heating for coal and gas. The OPUS estimate for wood was based on 15 kg per day in 45% of dwellings for 170 days per year. The 2001 estimates were based on survey data from the Auckland Regional Council Domestic Heating Survey (2001). The uncertainty associated with emissions from this sector is discussed in Section 4.

In 1996 the estimates for domestic emissions included small commercial sources which have not been able to be estimated here due to a lack of available fuel sales data as discussed elsewhere.

#### Table 7-10 Annual Emissions from Domestic Heating 1996 and 2001

| Data Source                           | Tonnes / Year |                 |                 |      |  |  |
|---------------------------------------|---------------|-----------------|-----------------|------|--|--|
| Data Source                           | со            | NO <sub>x</sub> | SO <sub>2</sub> | PM   |  |  |
| 2001 Residential                      | 4410          | 42              | 20              | 480  |  |  |
| 1996 (OPUS)<br>Residential/Commercial | 7991          | 244             | 243             | 1110 |  |  |

#### 7.3 Industry

Overall there has been little change to the level of industrial activity in the Region since 1996, with no major closures or new plants. A comparison of fuel consumption data for the main fuels used in industrial combustion processes is provided in Table 7-11. The table also presents the results for fuel consumption for 1996 backacst using 2001 emission factors.

| Annual consumption |            | Tonnes pollutant 1996 |      |     | Tonnes pollutant 2001 |     |      |     |                 |      |
|--------------------|------------|-----------------------|------|-----|-----------------------|-----|------|-----|-----------------|------|
| ruei               | 1996       | 2001                  | СО   | NOx | SO <sub>2</sub>       | РМ  | СО   | NOx | SO <sub>2</sub> | PM   |
| Gas (m³/y)         | 76,694,375 | 79,317,225            | 103  | 61  | 0                     | 9   | 107  | 63  | 0.3             | 10   |
| Coal (t/y)         | 9,108      | 5,049                 | 27   | 34  | 43                    | 28  | 15   | 19  | 24              | 16   |
| Wood (t/y)         | 202,100    | 576,765               | 1374 | 152 | 152                   | 657 | 3922 | 433 | 433             | 1874 |
| Total              | -          | -                     | 1505 | 247 | 195                   | 694 | 4044 | 515 | 457             | 1900 |

#### Table 7-11 Industrial Fuel Consumption Back-calculated 1996 and 2001

Table 7-12 presents the results for all industrial sources as calculated in 1996 and 2001. The particulate matter value in Table 7-12 for 2001 is lower than in Table 7-11 because real emission data is used as opposed to the comparison above, based on emission factors only.

The main differences between the years is that coal use has decreased while wood combustion has significantly increased. Gas use has increased slightly. The large difference in  $NO_x$  emissions between the 1996 and 2001 years is mainly due to a change in emission factors for  $NO_x$  from gas combustion, which has reduced by about one third mainly due to an assumption that burners are low  $NO_x$ , based on information supplied in the industry survey. The increase in wood combustion and a slightly higher particulate matter emission factor have contributed to the increase in particulate matter emissions from the industrial sector.



#### **Table 7-12 Total Annual Emissions from Industry 1996 and 2001**

| Data Source | Tonnes / Year |                 |                 |      |  |  |
|-------------|---------------|-----------------|-----------------|------|--|--|
| Data Source | со            | NO <sub>x</sub> | SO <sub>2</sub> | РМ   |  |  |
| 2001        | 4050          | 543             | 932             | 1369 |  |  |
| 1996 (OPUS) | 5687          | 1210            | 646             | 849  |  |  |

#### 7.4 Agriculture and Forestry

Burning is a permitted activity under both the regional air quality and land management plans, therefore the regional council does not keep records that can be used to estimate emissions. Likewise, information at the district level is fragmented and is insufficient for the purpose.

The previous inventory identified that burning, particularly forestry burning, was a reasonably significant contributor to particulate matter emissions at 12% annually. If anecdotal evidence is correct, then agricultural burning has significantly reduced and will no longer be a major contributor to particulate matter in the Region.

Forestry data for the Region, used to estimate pollen and pesticide use, indicate that there has been approximately a 25% increase in planting. The reported area in exotic forests for 1996 (OPUS) was 225,754 ha compared with 285,686 ha in 2001<sup>16</sup> or an increase of about 60,000 ha.

<sup>&</sup>lt;sup>16</sup> 2001 data was supplied by MAF, note these data differ to that provided in Table 3-14 for 1996/97 from the Land Cover database of 267,000 ha.
SINCLAIR KNIGHT MERZ

### 8. Summary of Data Gaps and Limitations

The main data gaps and limitations are identified below:

- Nationally and internationally the focus has moved away from total particulate matter to fine
  particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>), as have monitoring methods and emission factors. As a
  result total particulate matter was not estimated in this inventory. Emission factors for PM<sub>2.5</sub>
  are being developed but assumptions were needed to estimate PM<sub>2.5</sub>.
- Useful factors for particulate matter from quarries are not readily available. Emission factors from Parrett (1992) were used to estimate the contribution from quarries. It is recommended that their appropriateness be reviewed because quarry emissions were a reasonably significant industrial sources of fine particulate matter, but experience shows this is unlikely to be the case.
- The factors for fine particulate are from the US EPA and are likely to be conservative resulting in an over estimation of industrial particulate matter contributions. These factors should be refined for future studies, if possible.
- A lack of available data for fuel combustion (gas, wood and coal sales) meant that the estimate of small-scale commercial fuel combustion sources was not possible. Sources of sales data should be evaluated before commencing any future study to ensure that methods used are appropriate, such as by direct survey of small-scale industry.
- The data from regional council files for large-scale industrial sources was inadequate for the purposes of emission estimation. There was also relatively little compliance monitoring data available. As a consequence industrial activity data was gathered largely by industry survey. Large scale industrial solvent use, could be investigated in any future method developed for capturing activity data for large scale industrial sources to account for any regional variation.
- Data gaps in the estimations for dioxin and greenhouse gases occurred because activity data for other emissions was not suitable for use with emissions factors for these contaminants. In particular, fuel data was not available to estimate emissions from aviation, lawnmowing and shipping. This means that any comparisons with the relevant national inventories need to be made with caution and methods should be considered to estimate fuel consumption for these sources in future.
- Data for small-scale industrial sources (abrasive blasting and spray painting) was extrapolated from Nelson. The contribution from abrasive blasting is negligible and its inclusion in future inventories should be reviewed. Spray painting operations were accounted for as part of commercial VOC emissions. If the method used in this inventory is retained then separate estimations of spray painting emissions is not considered necessary.



- Domestic home heating and backyard burning are significant sources of fine particulate matter and benzene. Estimates in this study were extrapolated from other studies and there is a large degree of uncertainty in the assumptions as a result. It is recommended that the need for regionally specific data be reviewed by Environment Bay of Plenty should it wish to refine the estimates for these sources. Acetaldehyde, formaldehyde and 1,3 butadiene, in particular, could not be estimated for domestic backyard burning and domestic combustion, although they are likely to be relatively significant.
- Geothermal sources could not be estimated, as was the case in 1996. It is recommended that costs of estimating the emissions be weighed against the potential benefits before commissioning any further study of these emissions.
- The motor vehicle emission fleet data was not adjusted for regional variation on the basis that the registration data typically used for this has been found to not necessarily be representative of local conditions and on the advice of MoT. The need for adjustment and the data source for any adjustment should be reviewed before undertaking any future inventory.



### 9. References

Auckland Regional Council, Auckland Air Emission Inventory Final Report, March 1998

Environet Ltd, Auckland Domestic Heating Emission Inventory, 2001

Environet Ltd, *Good Practice Guide for Preparing Emission Inventories*, Ministry for the Environment Sustainable Management Fund, 2001

Environment Australia, NPI Emissions Estimation Technique Manual for Aggregated Emissions from Aircraft, May 2001

Environment Australia, NPI Emissions Estimation Technique Manual for Aggregated Emissions from Commercial Ships/Boats and Recreational Boats, September 1999

Environment Australia, NPI Emissions Estimation Technique Manual for Aggregated Emissions from Motor Vehicles, November 2000

Environment Bay of Plenty, Groundwater Resources of the Bay of Plenty,

Environmental Publication 2002/10, prepared by Dougall Gordon, Whakatane

Environment B·O·P, Proposed Bay of Plenty Regional Air Plan, Version 9, July 2000

Environment B·O·P, Quarry Compliance Report, Environmental Report 99/20, August 1999

Environment B·O·P, Report on the State of the Bay of Plenty Environment 2001

McGregor & Company, Bay of Plenty Regional Airport Requirements, Final Report 17 December 2002

Ministry for the Environment, Ambient Air Quality Guidelines 2002 Update, May 2002

Ministry for the Environment, New Zealand Inventory of Dioxin Emissions to Air, Land and Water, and Reservoir Sources, March 2000

Ministry for Economic Development, Petroleum Quality in New Zealand 1992–1999, July 2000

Ministry of Agriculture and Fisheries, National Exotic Forest Description, 2001

Ministry of Agriculture and Fisheries, *Review of Trends in Agricultural Pesticide Use in New Zealand*, MAF Policy Technical Paper 99/11, 1999

Ministry of Transport, Local Air Quality Management: *Impacts of Road Transport Sector*, Vehicle Fleet Emission Control Strategy Final Report, 1998

Ministry of Transport, Impacts of Rail Transport on Local Air Quality, July 1999

Ministry of Transport, New Zealand Traffic Emission Rates, Version 1

New Zealand Climate Change Project, Common Reporting Format for the Provision of Inventory Information by Annex I Parties to the UNFCC, April 2002

New Zealand Climate Change Project, National Inventory Report New Zealand Greenhouse Gas Inventory 1990-2000, April 2002

OPUS International Consultants, *Environment B.O.P Air Emission Inventory (Revised)*, September 1997

Parrett, F. W., Dust Emissions, Applied Environmetrics, 1992

Sinclair Knight Merz, Aggregated Emissions for the Pilbara Region, 2001

Sinclair Knight Merz, Perth Fugitive Studies, 1998/1999

Statistics New Zealand, A Regional Profile Bay of Plenty, 1999

UNEP Chemicals, Standardised Toolkit for Identification and Quantification for Dioxin and Furan Releases, January 2001

US Environmental Protection Agency, *Emission Inventory Improvement Programme Volume III, Chapter 16, Open Burning*, 2001

US Environmental Protection Agency, 'Supplement B to Compilation of Air Pollution Emission Factors – Volume I: Stationary and Area Sources' AP-42 Fifth Edition, November 1996

Wilton E, Christchurch Inventory of Emissions1991, Environment Canterbury Report R01/28

Wilton E, Timaru Inventory of Air Emissions - 2001, Environment Canterbury, 2001

Wilton, E and Simpson J., Nelson Emission Inventory, 2001

www.Binary.eea.eu.int:80/g/

www.environment.gov.au/epg/npi/handbooks/

www.environment.detr.gov.uk/airq/laqm/tg298/index.htm

www.epa.gov/ttnchie1/ap42/

www.ipcc-nggip.iges.or.jp/

www.stats.govt.nz



## **Units and Abbreviations**

| g               | gram                                              |
|-----------------|---------------------------------------------------|
| μg              | microgram (10 <sup>-6</sup> g)                    |
| ng              | nanogram (10 <sup>-9</sup> g)                     |
| m               | metre                                             |
| m <sup>3</sup>  | cubic metre                                       |
| Ν               | Nitrogen                                          |
| Nm <sup>3</sup> | Normal cubic metre of dry gas at °C and 101.3 kPa |
| Tj              | Terra joule (10 <sup>12</sup> j)                  |
| ARC             | Auckland Regional Council                         |
| СО              | Carbon monoxide                                   |
| EET             | Emission estimation technique                     |
| GHG             | greenhouse gas                                    |
| I-TEQ           | International Toxic Equivalent                    |
| LTO             | Landing and takeoff                               |
| MfE             | Ministry for the Environment                      |
| МоТ             | Ministry of Transport                             |
| NMVOC           | Non-methane volatile organic compounds            |
| NPI             | National Pollutant Inventory                      |
| NZGHGI          | New Zealand Greenhouse Gas Inventory              |
| NZTER           | New Zealand Traffic Emission Rates                |
| PM              | Particulate matter                                |
| TSP             | Total suspended particulate                       |
| UNEP            | United Nations Environmental Programme            |
| US EPA          | United States Environmental Protection Agency     |
| VKT             | Vehicle kilometre travelled                       |
| VOC             | Volatile organic compounds                        |



## Appendix A Industrial Sources


#### Table A-1 Gas Fired Industrial Plant

|                          |           |               |                            |                                |                                | 2001                  | ts     | 2001             | 2001                           |
|--------------------------|-----------|---------------|----------------------------|--------------------------------|--------------------------------|-----------------------|--------|------------------|--------------------------------|
| District/urban<br>centre | consent # | Site          | new name                   | Process                        | Hours of operation per<br>vear | Rating                | Ē      | Fuel Use (GJ)/yr | Fuel Use m <sup>3</sup> /yr of |
| Contro                   |           |               |                            | 1                              | ycu                            | 1                     |        |                  | ING IIIEU                      |
| RD                       | 30109     | FLETCHER (    | HALLENGE FORESTS LTD Rainb | Boiler                         | 8640                           | 10                    | MW     | 311040           | 7,776,000                      |
| RD                       | 30109     | FLETCHER (    | HALLENGE FORESTS LTD Rainb | 3 boilers to heat kilns        | 8640                           | 2.75                  | MW     | 85536            | 2,138,400                      |
|                          |           |               |                            |                                | 8640                           | 3                     | MW     | 93312            | 2.332.800                      |
| RD                       | 30073     | Wajariki Polv | tech                       | Boiler (boiler & 2 Kilns)      | (for training)                 | 11                    | MW     | 13 207           | 330 172                        |
| тр                       | 20122     |               |                            | Sludge deving                  | (ioi training)                 | 0                     | 10100  | 13,207           | 0                              |
| TD                       | 30122     | TAURANGA      |                            |                                | not operating                  | 1000 # # 1            |        | 0                | 0                              |
|                          | 30086     | лікац         | Kiwi Green mussels         | Boller                         |                                | 4000 lb/nr steam      | MVV    | 1121.6           | 28,040                         |
| ID                       | 30094     | Tauranga Aba  | attoir Byproducts          | Boller                         | 2160                           | 4000 lb/hr steam      |        | 6000             | 150,000                        |
|                          |           |               |                            | Boiler                         |                                | 2000 lb/hr steam      |        |                  |                                |
| WE                       | 61251     | SOUTHERN      | NURSERIES LTD Katikati     | Heater, air (gas heaters)      |                                | 11 x 100 - 200        | kW     | 1.10804          | 27.701                         |
| WE                       | 30056     | Pukepine Sav  | wmill Limited              | Kilns                          |                                | 1                     | MW     | 60000            | 1,500,000                      |
| TM                       | 30132     | ICI Chemical  | COrica Chemnet             | Boiler                         | 8,400                          |                       |        | 14,810           | 370,250                        |
| ТМ                       | 30097     | Bakels Edible | oils rendering             | Steampac Boiler                |                                |                       |        | 5,000            | 125,000                        |
|                          |           |               |                            | Boiler No.3 (Vaporax Boiler)   | May not be in use now          |                       |        | 0                | 0                              |
|                          |           |               |                            | Vapour Incinerator (Afterburne | er)                            |                       |        | 7,000            | 175,000                        |
|                          |           |               |                            | Rotary kiln Drier              |                                |                       |        | 11,000           | 275,000                        |
| ТМ                       | 30084     | Bakels Edible | oils refining              | Boilers (3)                    |                                | 200                   | kW     | 84,000           | 2,100,000                      |
| тм                       | 30078     | ICI NZ Orica  | Adhesives and resins       | Boiler                         |                                | 17400                 |        | 17400            | 435,000                        |
| ТМ                       | 30066     | Harvey Farms  | 5                          | Boiler                         | 3,500                          | 1.8                   | MW     | 22680            | 567,000                        |
|                          |           |               |                            | Grain Dryer                    |                                | 14                    | BTU's/ | 23305.2          | 582,630                        |
| тм                       | 30081     | Dominion Sal  | t                          | Boiler                         | 7,100                          | 5.6                   | MW     | 145366.56        | 3,634,164                      |
| тм                       | 30081     | Dominion Sal  | t                          | Rotary kiln (Rotary Drver)     |                                | 640                   | kW     | 5413.32          | 135.333                        |
| тм                       | 30129     | Confidential  | Disposals                  | Incinerator gas fired          | Assume same useage a           | s 1996                |        | 500              | 12.500                         |
| Mount                    | 61184     |               |                            | 2 Quarantine Incinerators      |                                |                       |        | 2761 56          | 69.039                         |
| Maunganui<br>T           | 30059     |               |                            | Hot din galvanising plant      | 2 630                          | 200                   | κW     | 7 064            | 176 591                        |
| ·<br>-                   | 20005     | Sanford Limit | ad                         | Poilore (2)                    | 2,000                          | 200                   | KVV    | 22 997           | 922 175                        |
| т<br>Т                   | 30095     |               |                            | Doilers (2)                    | (f II fine - )                 | 044                   |        | 10,000           | 4 000 000                      |
|                          | 30069     | Oleversed lad |                            | Bollers (2)                    | (iuii uirie)                   | 2 X 4.1               |        | 40,000           | 1,000,000                      |
| ĸ                        | 30123     |               |                            | Boller Klins (2)               | (1                             | .5 0F 2.5 ?) 200 GJ/0 |        | 249600           | 6,240,000                      |
| R                        | 30072     | Panahome N.   | Z Ltd                      | Burner                         | 600                            | 5                     | MW     | 10800            | 270,000                        |
| w                        | 30057     | CHH Packagi   | n CHH Paperboard           | Faster Wheeler Steam Boiler    | 5,920                          | (13.75kg/hr)          |        | 521,002          | 13,025,050                     |
|                          |           |               |                            | John Thompson Boiler           |                                |                       |        | 51,915           | 1,297,875                      |
| WD                       | 30114     | Bay Milk/BOF  | P Todd BOPE Limited        | Boiler                         | 7736                           | 16                    | MW     | 445594           | 11,139,840                     |
|                          |           |               |                            | Gas turbine                    | 8094                           | 4.8                   | MW     | 139864           | 3,496,608                      |
|                          |           |               |                            | Gas turbine                    | 7379                           | 4.8                   | MW     | 127509           | 3,187,728                      |
| WD                       | 30128     | Bay Milk      | NZMP LTD - EDGECUMBE       | Milk powder driers             | Gas appliances operated        | d by BOPE above       |        | NA               |                                |
| к                        | 30062     | CHH Tissue    | CHH Consumerbrands         | Boiler                         | Most of the time               | 16.7                  | MW     | 648,000          | 16,200,000                     |
|                          |           |               |                            | Boiler<br>Air Hostor           | Used on Standby                | 8.9                   | MW     |                  |                                |
|                          |           |               |                            | Air Heater                     | Most of the Time               | 5.8<br>4.5            | MW     |                  |                                |
|                          |           |               |                            | Heater                         | Used on cold days              | 0.264                 | MW     |                  |                                |
|                          |           |               |                            | Heater                         | Used on cold days              | 0.264                 | MW     |                  |                                |
|                          |           |               |                            | Heater                         | Used on cold days              | 0.135                 | MW     |                  |                                |
|                          |           |               |                            | Heater                         | Used on cold days              | 0.135                 | MW     |                  |                                |
|                          |           |               |                            | Heater                         | Used on cold days              | 0.135                 | MW     |                  |                                |

#### SINCLAIR KNIGHT MERZ

## Table A-2 Wood Fired Industrial Plant

|           |                              |                |                                                    |                                                                          |                                                                                                                                          |                                     | 2001        |          | 2001              |
|-----------|------------------------------|----------------|----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|----------|-------------------|
| Fuel type | District/ur<br>ban<br>centre | consent #      | Site                                               | Process                                                                  | Description                                                                                                                              | Hours of<br>operation per F<br>year | taing       | stinu    | Fuel use,<br>t/yr |
| Wood      | ۲                            | 30072          | Panahome NZ Ltd                                    | Maxitherm wood-waste boiler (lyttleton<br>Eng fire tube boiler, 5 kilns) | Dutch oven, NO <sub>x</sub> 0.8kg/hr (cyclone 10<br>kg/hr limit PM)                                                                      | 6800                                | 6.4         | MM       | 12970             |
|           | R                            | 30048          | CHH Timber                                         | Boilers (2)                                                              | 2 vekos grit circulation and kilns, 5 kg/hr<br>limit PM                                                                                  | 7200                                | kg/hr st    | eam      | 8500              |
|           | Ľ                            | 60842          | STEWART LOGGING LIMITED                            | Boilers, kilns                                                           | Dutch oven, flyash reinjection, $O_2$ meter                                                                                              | 8400                                | -           | MM       | 1400              |
|           | R                            | 30085          | Tachikawa                                          | Boiler, 4 MT kiins                                                       | Spreader stoker, mechanical (6kg/hr PM<br>Lim, actual about 4 kg/hr)                                                                     | 8,160                               | œ           | MM       | 5000              |
|           | ъ                            | 30075          | MAMAKU SAWMILLING CO LTD                           | Vekos W/W boiler (boiler 3 MT kiins)                                     | Fluidised bed, dry shavings, oxymitter, obscuration monitor (grit recirc)                                                                | 8,000                               | 2.75        | MM       | 7,800             |
|           | Ъ                            | 61497          | McAlpines (Rotorua) Ltd                            | Boiler wet sawdust                                                       | 3 kg/hr PM limit                                                                                                                         |                                     |             |          | 5600              |
|           | RD                           | 30063          | Fletcher Challenge Forests Ltd                     | two water tube boilers                                                   | 44MW max muticione, park polier has<br>wet scrubber. 7 kilns 7 more to go in over<br>next two years. 3.5MW electrical                    | 6800                                | 30          | MW       | 60795             |
|           | RD                           | 30143          | KLC LIMITED                                        | Boiler #1                                                                | Vekos dry wood waste, Scott Eng.<br>mechanical cyclone with fly ash<br>reinjection (3.5 kg/hr PM, wood waste<br>favoured, can burn coal) | 1248                                | 4.25        | MM       | 1581              |
|           |                              |                |                                                    | Boiler #2                                                                | Vekos By Scotts Eng, dry wood waste<br>(2.5 kg/hr PM), cyclone and ash recycling                                                         | 6240                                | 9           | MM       | 11158             |
|           | T<br>WBOP                    | 60919<br>61659 | TIMBER FINISHINGS LIMITED<br>CLAYMARK SAWMILLS LTD | Boilers, kiins<br>Boilers, 3 MT, 1HT kiin                                | Did not burn any wood waste in 2001<br>7 kg/hr PM                                                                                        | 0<br>6240                           | 3.2<br>12.1 | MW<br>WW | 0<br>22501        |
|           | WBOP                         | 30064          | H W Hooper W H Hopper                              | Fire tube (Boiler)                                                       | Uncontrolled (vekos (grit recirc), 2kg/hr<br>particulate limit, 4 kilns)                                                                 | 8,000                               | 9           | MW       | 14305             |
|           | WBOP                         | 30056          | PUKEPINE SAWMILL LIMITED Te Puke                   | 2MT kiins, 1 HT Kiin.                                                    | <ol> <li>4.5 kg/hr limit particulate. Flue gas recirc<br/>loop sawdust drier. Cyclone control.</li> </ol>                                | 6240                                | 4           | MW       | 7438              |
|           | 8                            | 30057          | CARTER HOLT HARVEY Packaging                       | John Thompson coal fired boiler conver-                                  | 2 Sibcco R type size 20 multi-cyclone<br>iash, followed by 2 Stairmand type high<br>efficiency cyclones                                  | 4,760                               | 16          | MM       | 1,805             |
|           | 20                           | 30067          |                                                    | Doilor                                                                   | (standby unit)                                                                                                                           | c                                   | c           |          | 13,802            |
|           | ~                            | 1cnnc          |                                                    |                                                                          | (startuby drift)                                                                                                                         | D                                   | 5           |          | D                 |
|           | ¥                            | 30068          | Carter Holt Harvey Tasman                          | Two power boilers                                                        | Electrostatic precipitators                                                                                                              | Wood fuel                           |             |          | 357,111           |

WR01503:WR01503W0005.DOC

| 1 |    |
|---|----|
|   | 0  |
|   | Ō. |
|   | Ð  |
| ( | Ŷ  |
| 1 | ສ  |
|   |    |
| i | T. |

| Other         |
|---------------|
| and           |
| Plant         |
| dustrial      |
| red In        |
| al Fil        |
| -3<br>0<br>-3 |
| Table A       |
|               |

| District/uturant     Consent #     Site     Process     Description     Hours of operation per     Rating     #     #     Fuel use.       T     30069     Western Bays Health     Boiler     N/A (back up only used when gas not available)     2 x 5     MW     0     0       WE     61251     Southern Nurseries     Boiler     Verkos beiler     Verkos boiler     Verkos boiler     2 x 5     MW     0     0       W     61497     McAlpines (Rotorua) L Boiler     Verkos boiler     Verkos boiler     Verkos boiler     2 sibcco R type size 20 multi-cyclone saf, followed     510     14     MW     14.09     705       W     30057     CHH Packaging     Mth dumping grates & spreader     by 2 Stairmand type high efficiency cyclones, 510     510     14     MW     14.09     705       MM     30057     CHH Packaging     Mth dumping grates & spreader     by 3 stoce R type size 20 multi-cyclone saf, followed     510     14     MV     14.09     705       MM     3 stoce R type size 20 multi-cyclone saf, followed     510     14     MV     14.09     705       MM     3 stoce R type size 20 multi-cyclone saf, followed     510     14     MV     14.09     705       Mith dumping grates & spreader     by 2 Stairmand type high efficiency cyclones, st                                                                                                                                                                                                                                                                    |                          |           |                       |                                                                             |                                                                                                                                 |                                   | 2001   |       |       | 2001           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|-----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|-------|-------|----------------|--|
| T       30069       Western Bays Health       Boilers       N/A (back up only used when gas not available)       2 x 5       M/V       0       0         WE       61251       Southern Nurseries       Boiler       water tube, over feed stoker, cyclones (470 %       8227       1.5       M/V       8.706       435.3         WE       61251       Southern Nurseries       Boiler       Vekos back up boiler       Vekos back up boiler       2.8       1400         W       30057       CHH Packaging       With dumping grates & spreader       by 2. Stairmand type high efficiency cyclones, followed       510       14       M/V       705         W       30057       CHH Packaging       with dumping grates & spreader       by 2. Stairmand type high efficiency cyclones, followed       510       14       M/V       705         W       30057       CHH Packaging       with dumping grates & spreader       by 2. Stairmand type high efficiency cyclones, followed       510       14       M/V       705         With dumping grates & spreader       by 2. Stairmand type high efficiency cyclones, followed       510       14       M/V       14.09       705         With dumping grates & spreader       by 2. Stairmand type high efficiency cyclones, followed       510       14       M/V       14.09       705<                                                                                                                                                                                                       | District/urban<br>centre | consent # | Site                  | Process                                                                     | Description                                                                                                                     | Hours of<br>operation per<br>year | Rating | stinu | TJ/yr | Fuel use, t/yr |  |
| WE       61251       Southern Nurseries       Boiler       water tube, over feed stoker, cyclones (470 % 8227       1.5       MW       8.706       435.3         R       61497       McAlpines (Rotorua) L Boiler       Vekos back up boiler       Vekos back up boiler       28       1400         W       30057       CHH Packaging       with dumping grates & spreader       by 2 Stairmand type high efficiency cyclones, 510       14       MW       14.09       705         W       30057       CHH Packaging       with dumping grates & spreader       by 2 Stairmand type high efficiency cyclones, 510       14       MW       14.09       705         W       30057       CHH Packaging       with dumping grates & spreader       by 2 Stairmand type high efficiency cyclones, 510       14       MW       14.09       705         W       30057       CHH Packaging       with dumping grates & spreader       by 2 Stairmand type high efficiency cyclones, 510       510       14       MW       14.09       705         W       astoker       John Thompson water tube boiler       3 Sibcco R type size 20 multi-cyclone sah, followed       510       14       MW       14.09       705         Mith dumping grates & spreader       by 2 Sitairmand type high efficiency cyclones, 510       510       14       MW <td< td=""><td>F</td><td>30069</td><td>Western Bays Health</td><td>Boilers</td><td>N/A (back up only used when gas not available)</td><td></td><td>2 x 5</td><td>MM</td><td>0</td><td>0</td><td></td></td<> | F                        | 30069     | Western Bays Health   | Boilers                                                                     | N/A (back up only used when gas not available)                                                                                  |                                   | 2 x 5  | MM    | 0     | 0              |  |
| R       61497       McAlpines (Rotorua) L Boiler       Vekos back up boiler       Vekos back up boiler       2 Sibcco R type size 20 multi-cyclone ash, followed       28       1400         W       30057       CHH Packaging       with dumping grates & spreader       by 2 Stairmand type high efficiency cyclones,       510       14       MW       14.09       705         W       30057       CHH Packaging       with dumping grates & spreader       by 2 Stairmand type high efficiency cyclones,       510       14       MW       14.09       705         Mith dumping grates & spreader       by 2 Stairmand type high efficiency cyclones,       510       14       MW       14.09       705         Mith dumping grates & spreader       by 2 Stairmand type high efficiency cyclones,       510       14       MW       14.09       705         Mith dumping grates & spreader       by 2 Stairmand type high efficiency cyclones,       510       14       MW       14.09       705         Mith dumping grates & spreader       by 2 Stairmand type high efficiency cyclones,       510       14       MW       14.09       705         Mith dumping grates & spreader       by 2 Stairmand type high efficiency cyclones,       510       14       MW       14.09       705         Mith dumping grates       by 10 minuous coal fr                                                                                                                                                                                             | WE                       | 61251     | Southern Nurseries    | Boiler                                                                      | water tube, over feed stoker, cyclones (470 & 600kW not currently used)                                                         | 8227                              | 1.5    | MM    | 8.706 | 435.3          |  |
| W       30057       CHH Packaging with dumping grates & spreader by 2 Stairmand type high efficiency cyclones, 510       14       MW       14.09       705         V       30057       CHH Packaging with dumping grates & spreader by 2 Stairmand type high efficiency cyclones, 510       14       MW       14.09       705         John Thompson water tube boiler       3 Sibcco R type size 20 multi-cyclone ash, followed       510       14       MW       14.09       705         with dumping grates & spreader       by 2 Stairmand type high efficiency cyclones, 510       14       MW       14.09       705         stoker       by 2 Stairmand type high efficiency cyclones, 510       14       MW       14.09       705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ъ                        | 61497     | McAlpines (Rotorua) L | - Boiler                                                                    | Vekos back up boiler                                                                                                            |                                   |        |       | 28    | 1400           |  |
| John Thompson water tube boiler 3 Sibcco R type size 20 multi-cyclone ash, followed<br>with dumping grates & spreader by 2 Stairmand type high efficiency cyclones, 510 14 MW 14.09 705<br>stoker bituminous coal from Rotowaro 2001 a 2001 a 2001 a 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~                        | 30057     | CHH Packaging         | John Thompson water tube boiler<br>with dumping grates & spreader<br>stoker | 2 Sibcco R type size 20 multi-cyclone ash, followed by 2 Stairmand type high efficiency cyclones, bituminous coal from Rotowaro | 510                               | 14     | MM    | 14.09 | 705            |  |
| 2001 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |           |                       | John Thompson water tube boiler<br>with dumping grates & spreader<br>stoker | 3 Sibcco R type size 20 multi-cyclone ash, followed by 2 Stairmand type high efficiency cyclones, bituminous coal from Rotowaro | 510                               | 14     | MM    | 14.09 | 705            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |           |                       |                                                                             |                                                                                                                                 |                                   |        | 2001  | s     | 2001           |  |

|            |                          |           |                    |                      |                    |                          |                                  | 2001                                   | st         | 2001                                       | st         |
|------------|--------------------------|-----------|--------------------|----------------------|--------------------|--------------------------|----------------------------------|----------------------------------------|------------|--------------------------------------------|------------|
|            | District/urban<br>centre | consent # | Site               | new name             | Process            | Description              | Hours of operation (<br>per year | Capacity ( heat<br>input) Btu/yr GJ/yr | inu<br>inu | uel Use (GJ)<br>r m <sup>3</sup> /vr of NG | inu        |
| Diesel     | T                        | 30069     | WESTERN BAY HEALTH |                      | stand by generator | N/A                      | 0                                | 0                                      |            | 0                                          |            |
| combustion | н                        | 60400     | Bitumix Ltd        | Works Infrastructure | Burner (oil)       | diesel operated          | 4380                             | 300 kV                                 | ۲/h        | 142,540 litre                              | is total a |
|            |                          |           |                    |                      | Boiler             | does not produce asphalt | 600                              | 200 kM                                 | ۲//        | 290 litre                                  | wd s       |
|            |                          |           |                    |                      | afterburner        |                          | 624                              | 250 kW                                 | u//        | 145 litre                                  | wd s       |
|            |                          |           |                    |                      |                    |                          |                                  |                                        |            |                                            |            |

| Ashpalt |                 | Production tpy |
|---------|-----------------|----------------|
| ΤM      | Higgins & Sons  | 10000          |
| TM      | Allied Asphalt  | 40000          |
| Я       | Allied Asphalts | 12000          |
|         |                 |                |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC



#### Appendix B Pollutant Summaries by Source, District and Urban Area Basis

SINCLAIR KNIGHT MERZ

| /Year)                    |
|---------------------------|
| Tonnes                    |
| Winter (                  |
|                           |
|                           |
| able B-1 PM <sub>10</sub> |

| Annual<br>PM <sub>10</sub> |          |       | Transport      |          |       |          | Dom     | estic      |       | Industrial | TOTAL PM <sub>10</sub> |
|----------------------------|----------|-------|----------------|----------|-------|----------|---------|------------|-------|------------|------------------------|
| tonnes per                 |          |       |                |          |       | Backyard | Home    |            |       |            |                        |
| year                       | Aviation | Rail  | Motor vehicles | Shipping | Total | burning  | heating | Lawnmowing | Total |            |                        |
| District                   |          |       |                |          |       |          |         |            |       |            |                        |
| Taupo                      | 0        | 0     | 80             | 0        | ∞     | 0.2      | 0.4     | 0.0        | -     | 8          | 16                     |
| WBOP                       | 0        | 2     | 74             | 0        | 79    | 34       | 76      | 0.4        | 110   | 354        | 543                    |
| Tauranga                   | 48       | 2     | 74             | 58       | 182   | 85       | 193     | 1.1        | 278   | 46         | 506                    |
| Rotorua                    | 15       | 0     | 75             | 0        | 89    | 52       | 117     | 0.7        | 170   | 567        | 826                    |
| Whakatane                  | 7        | 9     | 53             | 0        | 61    | 28       | 63      | 0.4        | 06    | 145        | 297                    |
| Kawerau                    | 0        | 0.1   | 4.2            | 0        | 4     | 9        | 13      | 0.1        | 18    | 249        | 271                    |
| Opotiki                    | 0        | 0     | 17             | 0        | 17    | 8        | 18      | 0.1        | 25    | 0          | 43                     |
| Total                      | 64       | 13    | 305            | 58       | 441   | 211      | 480     | 2.8        | 693   | 1369       | 2503                   |
| Urban areas                |          |       |                |          |       |          |         |            |       |            |                        |
| Tauranga                   | 48       | 0.502 | 60             | 41       | 149   | 81       | 185     | 1.1        | 267   | 30         | 446                    |
| Rotorua                    | 15       | 0.003 | 36             | 0.0      | 51    | 44       | 101     | 0.6        | 146   | 285        | 482                    |
| Whakatane                  | 0        | 0     | 8              | 0.0      | 8     | 18       | 41      | 0.2        | 59    | 2          | 68                     |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

| ť        |
|----------|
| 0        |
| D        |
| Ð        |
| <u>e</u> |
| _        |
| g        |
| _⊆_      |
| i.       |
| _        |

### Table B-2 PM<sub>10</sub> (Tonnes / Year)

| Annual<br>PM <sub>10</sub> |          |       | Transport      |          |       |          | Dom     | estic      |       | Industrial | TOTAL PM <sub>10</sub> |
|----------------------------|----------|-------|----------------|----------|-------|----------|---------|------------|-------|------------|------------------------|
| tonnes per                 |          |       |                |          |       | Backyard | Home    |            |       |            |                        |
| year                       | Aviation | Rail  | Motor vehicles | Shipping | Total | burning  | heating | Lawnmowing | Total |            |                        |
| District                   |          |       |                |          |       |          |         |            |       |            |                        |
| Taupo                      | 0        | 0     | 8              | 0        | ∞     | 0.2      | 0.4     | 0.0        | -     | ω          | 16                     |
| WBOP                       | 0        | Ŋ     | 74             | 0        | 79    | 34       | 76      | 0.4        | 110   | 354        | 543                    |
| Tauranga                   | 48       | 2     | 74             | 58       | 182   | 85       | 193     | 1.1        | 278   | 46         | 506                    |
| Rotorua                    | 15       | 0     | 75             | 0        | 89    | 52       | 117     | 0.7        | 170   | 567        | 826                    |
| Whakatane                  | 7        | 9     | 53             | 0        | 61    | 28       | 63      | 0.4        | 06    | 145        | 297                    |
| Kawerau                    | 0        | 0.1   | 4.2            | 0        | 4     | 9        | 13      | 0.1        | 18    | 249        | 271                    |
| Opotiki                    | 0        | 0     | 17             | 0        | 17    | ø        | 18      | 0.1        | 25    | 0          | 43                     |
| Total                      | 64       | 13    | 305            | 58       | 441   | 211      | 480     | 2.8        | 693   | 1369       | 2503                   |
| Urban areas                |          |       |                |          |       |          |         |            |       |            |                        |
| Tauranga                   | 48       | 0.502 | 60             | 41       | 149   | 81       | 185     | 1.1        | 267   | 30         | 446                    |
| Rotorua                    | 15       | 0.003 | 36             | 0.0      | 51    | 44       | 101     | 0.6        | 146   | 285        | 482                    |
| Whakatane                  | 0        | 0     | 8              | 0.0      | ω     | 18       | 41      | 0.2        | 59    | 2          | 68                     |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

| ÷      |
|--------|
| 5      |
| 2      |
| 0      |
| J<br>J |
| R      |
| _      |
| g      |
|        |
| 17     |
| _      |
|        |

### ■ Table B-3 PM<sub>2.5</sub> (Tonnes / Year)

| PM <sub>2.5</sub> |                | Trans    | port  |          |       |          | Dor     | nestic     |       | Industrial | TOTAL PM <sub>2.5</sub> |
|-------------------|----------------|----------|-------|----------|-------|----------|---------|------------|-------|------------|-------------------------|
| tonnes per        |                |          |       |          |       | Backyard | Home    |            |       |            |                         |
| year              | Motor vehicles | Aviation | Rail  | Shipping | Total | burning  | heating | Lawnmowing | Total |            |                         |
| District          |                |          |       |          |       |          |         |            |       |            |                         |
| Taupo             | 5              | 0        | 0     | 0        | 5     | 0.2      | 0.3     | 0.002      | -     | 2.3        | 7                       |
| WBOP              | 44             | 0        | 4     | 0        | 49    | 31       | 71      | 0.3        | 103   | 183        | 334                     |
| Tauranga          | 44             | 48       | 0     | 54       | 148   | 79       | 179     | -          | 259   | 32         | 439                     |
| Rotorua           | 45             | 15       | 0.03  | 0        | 59    | 48       | 109     | -          | 158   | 456        | 673                     |
| Whakatane         | 32             | 7        | 5.6   | 0        | 40    | 26       | 58      | 0.3        | 84    | 80         | 204                     |
| Kawerau           | ო              | 0        | 0.1   | 0        | ი     | 5        | 12      | 0.1        | 17    | 161        | 181                     |
| Opotiki           | 10             | 0        | 0     | 0        | 10    | 7        | 16      | 0.1        | 24    | 0          | 34                      |
| Total             | 183            | 64       | 12    | 54       | 313   | 197      | 447     | 2          | 646   | 914        | 1873                    |
| Urban areas       |                |          |       |          |       |          |         |            |       |            |                         |
| Tauranga          | 36             | 48       | 0.46  | 37.53    | 122   | 76       | 172     | -          | 249   | 29         | 400                     |
| Rotorua           | 22             | 15       | 0.003 |          | 36    | 42       | 94      | 0.4        | 136   | 239        | 412                     |
| Whakatane         | 5              |          | 0.3   |          | 4.9   | 17       | 38      | 0.2        | 55    | 2          | 61                      |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

# Table B-4 Carbon monoxide (Tonnes / Year)

|             |                | Tran     | sport |          |       |              | Don     | nestic     |       | Industrial | Field burning | TOTAL CO |
|-------------|----------------|----------|-------|----------|-------|--------------|---------|------------|-------|------------|---------------|----------|
| 00          |                |          |       |          |       |              |         |            |       |            | )             |          |
| tonnes per  |                |          |       |          |       | Backyard     | Home    |            |       |            |               |          |
| year        | Motor vehicles | Aviation | Rail  | Shipping | Total | burning      | heating | Lawnmowing | Total |            |               |          |
| District    |                |          |       |          |       |              |         |            |       |            |               |          |
| Taupo       | 249            | 0        | 0     | 0        | 249   | <del>.</del> | ო       | 0          | 4     | 0          | NA            | 253      |
| WBOP        | 2670           | 0        | 18    | 0        | 2688  | 113          | 702     | 72         | 888   | 304        | ΝA            | 3880     |
| Tauranga    | 3909           | 44       | 6     | 68       | 4030  | 284          | 1770    | 182        | 2237  | 18         | ΝA            | 6284     |
| Rotorua     | 3352           | 46       | 0.1   | 0        | 3398  | 174          | 1080    | 111        | 1365  | 1124       | ΝA            | 5887     |
| Whakatane   | 2188           | 13       | 24    | 0        | 2225  | 92           | 576     | 59         | 727   | 154        | ΝA            | 3106     |
| Kawerau     | 219            | 0        | 0.5   | 0        | 219   | 19           | 117     | 12         | 148   | 2450       | ΝA            | 2817     |
| Opotiki     | 603            | 0        | 0     | 0        | 603   | 26           | 161     | 17         | 204   | 0          | ΝA            | 807      |
| Total       | 13190          | 103      | 52    | 68       | 13412 | 708          | 4410    | 454        | 5573  | 4050       | 395           | 23430    |
| Urban areas |                |          |       |          |       |              |         |            |       |            |               |          |
| Tauranga    | 3448           | 44       | 2     | 54       | 3548  | 273          | 1700    | 175        | 2147  | 17         | ΝA            | 5712     |
| Rotorua     | 2072           | 46       | 0.01  | 0        | 2118  | 149          | 929     | 96         | 1174  | 603        | ΝA            | 3895     |
| Whakatane   | 443            | 0        | 0     | 0        | 443   | 60           | 374     | 39         | 473   | 19         | NA            | 935      |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

#### ■ Table B-5 CO<sub>2</sub> (Tonnes / Year)

|             |                | Transp | oort     |          |          | Domestic |              |            |        | Industrial | TOTAL CO <sub>2</sub> |
|-------------|----------------|--------|----------|----------|----------|----------|--------------|------------|--------|------------|-----------------------|
| $CO_2$      |                |        | _        |          |          |          |              |            |        |            |                       |
| tonnes per  |                |        |          |          |          | Backyard |              |            |        |            |                       |
| year        | Motor vehicles | Rail   | Shipping | Aviation | Total    | burning  | Home heating | Lawnmowing | Total  |            |                       |
| District    |                |        |          |          |          |          |              |            |        |            |                       |
| Taupo       | 19769          | 0      | 0        | AN       | 19769.45 | 19       | 74           | 2          | 95     | 0          | 19865                 |
| WBOP        | 195178         | 6707   | 0        | AN       | 201886   | 3950     | 15117        | 377        | 19444  | 51462      | 273675                |
| Tauranga    | 197052         | 3251   | 27925    | AN       | 228227   | 9953     | 38096        | 949        | 48999  | 23367      | 302694                |
| Rotorua     | 198015         | 46     | 0        | AN       | 198060   | 6073     | 23246        | 579        | 29899  | 215158     | 444527                |
| Whakatane   | 140921         | 8999   | 0        | AN       | 149921   | 3236     | 12386        | 309        | 15931  | 86931      | 253703                |
| Kawerau     | 11220          | 170    | 0        | AN       | 11390    | 657      | 2515         | 63         | 3235   | 34653      | 49278                 |
| Opotiki     | 45932          | 0      | 0        | AN       | 45932.18 | 908      | 3475         | 87         | 4469   | 0          | 50614                 |
| Total       | 808088         | 19173  | 27925    | 56494    | 911680   | 24797    | 94910        | 2365       | 122072 | 411571     | 1445323               |
| Urban areas |                |        |          |          |          |          |              |            |        |            |                       |
| Tauranga    | 160421         | 737    | 19489    | AN       | 180647   | 9555     | 36572        | 911        | 47039  | 22997      | 250683                |
| Rotorua     | 96409          | വ      | 0        | AN       | 96414    | 5223     | 19992        | 498        | 25713  | 107030     | 229157                |
| Whakatane   | 20619          | 0      | 0        | NA       | 20619    | 2103     | 8051         | 201        | 10355  | 29792      | 60766                 |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

### Table B-6 Dioxin (mg I-TEQ / Year)

| Dioxin            | Transport (excludin | g aviation and | shipping) | Domestic ( | excluding la | twn mowing) | Industrial |                     |
|-------------------|---------------------|----------------|-----------|------------|--------------|-------------|------------|---------------------|
|                   |                     |                |           | Backyard   | Home         |             |            |                     |
| mg I-TEQ per year | Motor vehicles      | Rail           | Total     | burning    | heating      | Total       |            | <b>TOTAL DIOXIN</b> |
| District          |                     |                |           |            |              |             |            |                     |
| Taupo             | 0.6                 | 0              | 0.6       | 4          | 0            | 4           | 0          | 5                   |
| WBOP              | 5.5                 | 1.1            | 6.6       | 806        | 48           | 855         | 27         | 888                 |
| Tauranga          | 5.6                 | 0.5            | 6.1       | 2031       | 122          | 2153        | 0.2        | 2160                |
| Rotorua           | 5.6                 | 0.0            | 5.6       | 1239       | 75           | 1314        | 97         | 1417                |
| Whakatane         | 4.0                 | 1.5            | 5.4       | 660        | 40           | 700         | 11         | 717                 |
| Kawerau           | 0.3                 | 0.0            | 0.3       | 134        | ω            | 142         | 241        | 383                 |
| Opotiki           | 1.3                 | 0.0            | 1.3       | 185        | 11           | 196         | 0          | 198                 |
| Total             | 22.8                | 3.1            | 25.9      | 5061       | 304          | 5365        | 376        | 5767                |
| Urban areas       |                     |                |           |            |              |             |            |                     |
| Tauranga          | 4.5                 | 0.1            | 4.7       | 1950       | 117          | 2067        | 0.2        | 2072                |
| Rotorua           | 2.7                 | 0.0            | 2.7       | 1066       | 64           | 1130        | 52         | 1185                |
| Whakatane         | 0.6                 | 0              | 0.6       | 429        | 26           | 455         | 0.3        | 456                 |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

| -        |
|----------|
| <u> </u> |
| -        |
| <u> </u> |
| 0        |
| 4        |
| ~        |
| n c      |
| _        |
| _        |
| 3        |
| 1        |
| _        |
|          |
| ш.       |
|          |
|          |

### ■ Table B-7 NO<sub>x</sub> (Tonnes / Year)

|             |                | Tran     | sport |          |       |          | Dor          | nestic     |       | Industrial | Biogenic   |               | TOTAL NOX |
|-------------|----------------|----------|-------|----------|-------|----------|--------------|------------|-------|------------|------------|---------------|-----------|
| NOX         |                |          |       |          |       |          |              |            |       |            | •          |               |           |
| tonnes per  |                |          |       |          |       | Backyard | Home         |            |       |            |            |               |           |
| year        | Motor vehicles | Aviation | Rail  | Shipping | Total | burning  | heating      | Lawnmowing | Total |            | Vegetation | Field burning |           |
| District    |                |          |       |          |       |          |              |            |       |            |            |               |           |
| Taupo       | 119            | 0        | 0     | 0        | 119   | 0.04     | 0.03         | 0.003      | 0.07  | 0          | ΝA         | AN            | 119       |
| WBOP        | 1175           | 0        | 184   | 0        | 1360  | 8        | 7            | -          | 15    | 36         | AN         | AN            | 1411      |
| Tauranga    | 1215           | 258      | 89    | 477      | 2039  | 20       | 17           | -          | 38    | 15         | ΝA         | AN            | 2093      |
| Rotorua     | 1207           | 91       | 1.3   | 0        | 1299  | 12       | 10           | -          | 23    | 141        | ΝA         | AN            | 1464      |
| Whakatane   | 855            | 15       | 247   | 0        | 1116  | 7        | 5            | 0          | 13    | 43         | ΝA         | AN            | 1172      |
| Kawerau     | 69             | 0        | 4.7   | 0        | 74    | ~        | <del>.</del> | 0          | ო     | 308        | ΝA         | AN            | 384       |
| Opotiki     | 276            | 0        | 0     | 0        | 276   | 7        | 7            | 0          | 4     | 0          | ΝA         | AN            | 280       |
| Total       | 4916           | 363      | 526   | 477      | 6282  | 51       | 42           | 4          | 96    | 543        | 1301       | 21            | 8243      |
| Urban areas |                |          |       |          |       |          |              |            |       |            |            |               |           |
| Tauranga    | 995            | 258      | 20    | 302      | 1575  | 20       | 16           | -          | 37    | 15         | ΝA         | AN            | 1627      |
| Rotorua     | 598            | 91       | 0.14  | 0        | 689   | 1        | ი            | -          | 20    | 71         | ΑN         | AN            | 780       |
| Whakatane   | 128            | 0        | 0     | 0        | 128   | 4        | 4            | 0          | 8     | 11         | NA         | NA            | 148       |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

# Table B-8 Sulphur dioxide (Tonnes / Year)

| TOTAL SO <sub>2</sub> |            |                |          | 12     | 164      | 1266     | 251     | 117       | 14      | 28      | 1852  |             | 1107     | 129     | 15        |
|-----------------------|------------|----------------|----------|--------|----------|----------|---------|-----------|---------|---------|-------|-------------|----------|---------|-----------|
| Industrial            |            |                |          | 0      | 35       | 745      | 127     | 19        | 9       | 0       | 932   |             | 745      | 66      | 0.1       |
|                       |            | Total          |          | 0.02   | 5        | 11       | 7       | 4         | -       | -       | 29    |             | 11       | 9       | 2         |
|                       |            | Lawnmowing     |          | 0.0001 | 0.02     | 0.04     | 0.02    | 0.01      | 0.003   | 0.004   | 0.1   |             | 0.04     | 0.02    | 0.01      |
| Domestic              |            | Home heating   |          | 0      | ო        | ω        | 5       | ო         | -       | ~       | 20    |             | ω        | 4       | 2         |
|                       | Backyard   | burning        |          | 0.0    | ~        | ო        | 2       | -         | 0.2     | 0.3     | 8     |             | ო        | 2       | -         |
|                       |            | Total          |          | 12     | 124      | 510      | 117     | 95        | 7       | 27      | 891   | 0           | 352      | 57      | 12        |
|                       |            | rail           |          | 0      | <b>б</b> | 4        | 0       | 12        | 0       | 0       | 25    |             | 0.5      | 0       | 0         |
| t                     |            | Shipping       |          | 0      | 0        | 390      | 0       | 0         | 0       | 0       | 390   |             | 257      | 0       | 0         |
| Transpo               |            | Aviation       |          | 0      | 0        | 0.1      | 0.1     | 0.0       | 0       | 0       | 0.2   |             | 0.1      | 0.1     | 0         |
|                       |            | Motor vehicles |          | 12     | 115      | 116      | 117     | 83        | 7       | 27      | 477   |             | 95       | 57      | 12        |
| SO <sub>2</sub>       | tonnes per | year           | District | Taupo  | WBOP     | Tauranga | Rotorua | Whakatane | Kawerau | Opotiki | Total | Urban areas | Tauranga | Rotorua | Whakatane |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

# Table B-9 Volatile Organic Compounds (Tonnes / Year)

|             |                |          | ransport   |          |       |          | Domesti | <u>o</u>   |             |       | Industrial | Biogenic | TOTAL VOC |
|-------------|----------------|----------|------------|----------|-------|----------|---------|------------|-------------|-------|------------|----------|-----------|
| voc         |                |          |            |          |       |          |         | Ş          | scommercial |       |            |          |           |
| tonnes per  |                |          |            |          |       | Backyard | Home    |            |             |       |            |          |           |
| year        | Motor vehicles | Rail     | Shipping / | Aviation | Total | burning  | heating | Lawnmowing | NMVOCs      | Total |            |          |           |
| District    |                |          |            |          |       |          |         |            |             |       |            |          |           |
| Taupo       | 34             | 0        | 0          | 0        | 34    | 0        | ~       | 0          | 1.8         | ო     | 0          | ΑN       | 37        |
| WBOP        | 376            | 7        | 0          | 0        | 383   | 12       | 200     | 16         | 372         | 600   | 7          | ΑN       | 066       |
| Tauranga    | 624            | ო        | 23         | 27       | 678   | 29       | 504     | 41         | 885         | 1459  | 2          | ΑN       | 2139      |
| Rotorua     | 511            | 0        | 0          | 25       | 536   | 18       | 308     | 25         | 594         | 945   | 26         | ΑN       | 1507      |
| Whakatane   | 324            | <b>6</b> | 0          | 7        | 340   | ი        | 164     | 13         | 319         | 506   | 5          | ΔN       | 851       |
| Kawerau     | 35             | 0.2      | 0          | 0        | 35    | 0        | 33      | ო          | 68          | 106   | 55         | ΑN       | 196       |
| Opotiki     | 83             | 0        | 0          | 0        | 83    | ო        | 46      | 4          | 06          | 142   | 0          | ΑN       | 225       |
| Total       | 1987           | 19       | 23         | 59       | 2089  | 73       | 1256    | 103        | 2329        | 3761  | 95         | 41557    | 47502     |
| Urban areas |                |          |            |          |       |          |         |            |             |       |            |          |           |
| Tauranga    | 561            | 0.7      | 20         | 27       | 609   | 28       | 484     | 40         | 849         | 1401  | 1.8        | ٩N       | 2012      |
| Rotorua     | 337            | 0.0      | 0          | 25       | 362   | 15       | 265     | 22         | 511         | 812   | 13.9       | ΔN       | 1189      |
| Whakatane   | 72             | 0.0      | 0          | 0        | 72    | 9        | 107     | 6          | 208         | 329   | 1.3        | ΑN       | 402       |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

| 1  |  |
|----|--|
| 5  |  |
| ĕ  |  |
| 5  |  |
| ~  |  |
|    |  |
| _  |  |
| 6  |  |
|    |  |
| 11 |  |
|    |  |
|    |  |

| _            |
|--------------|
| ear          |
| $\geq$       |
| (Tonnes      |
| /de          |
| dehy         |
| Acetal       |
| B-10 /       |
| <b>Table</b> |
|              |

|              |                | Trans    | sport |          |       |          | Dor     | nestic     |       | Industrial | TOTAL ACETALDEHYDE |
|--------------|----------------|----------|-------|----------|-------|----------|---------|------------|-------|------------|--------------------|
| Acetaldehyde |                |          | -     |          |       |          |         |            |       |            |                    |
| tonnes per   |                |          |       |          |       | Backyard | Home    |            |       |            |                    |
| year         | Motor vehicles | Aviation | Rail  | Shipping | Total | burning  | heating | Lawnmowing | Total |            |                    |
| District     |                |          |       |          |       |          |         |            |       |            |                    |
| Taupo        | -              | 0        | 0     | 0        | -     | ΔN       | ΝA      | 0.1        | 0.1   | 0          | 7                  |
| WBOP         | 10             | 0        | 2     | 0        | 12    | ΔN       | NA      | 16         | 16    | 0.0001     | 28                 |
| Tauranga     | 16             | 1.3      | ~     | 0.8      | 19    | ΔN       | NA      | 41         | 41    | 0          | 60                 |
| Rotorua      | 13             | 1.2      | 0.0   | 0        | 14    | ΔN       | NA      | 25         | 25    | 0.0004     | 40                 |
| Whakatane    | ø              | 0        | ო     | 0        | 11    | ٩N       | NA      | 13         | 13    | 0.0004     | 25                 |
| Kawerau      | -              | 0        | 0.0   | 0        | -     | ΔN       | NA      | ო          | ო     | 0          | 4                  |
| Opotiki      | 7              | 0        | 0     | 0        | 2     | ΔN       | NA      | 4          | 4     | 0          | 9                  |
| Total        | 51             | 2.7      | 9     | 0.8      | 60    | NA       | NA      | 103        | 103   | 0.001      | 163                |
| Urban areas  |                |          |       |          |       |          |         |            |       |            |                    |
| Tauranga     | 14             | 1.3      | 0.2   | 0.65     | 17    | ΔN       | NA      | 40         | 40    | 0          | 56                 |
| Rotorua      | თ              | 1.2      | 0.0   | 0        | 9.8   | ΔN       | NA      | 22         | 22    | 0          | 32                 |
| Whakatane    | 2              | 0        | 0.0   | 0        | 1.9   | ΝA       | NA      | 6          | 6     | 0          | 11                 |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

| /Year)     |
|------------|
| (Tonnes    |
| Benzene    |
| Table B-11 |
|            |

|             |                | Τr       | ansport |          |       |          | Dol     | nestic     |       | Industrial | Waste       | TOTAL BENZENE |
|-------------|----------------|----------|---------|----------|-------|----------|---------|------------|-------|------------|-------------|---------------|
| Benzene     |                |          |         |          |       |          |         |            |       |            |             |               |
| tonnes per  |                |          |         |          |       | Backyard | Home    |            |       |            | Landfills & |               |
| year        | Motor vehicles | Aviation | Rail    | Shipping | Total | burning  | heating | Lawnmowing | Total |            | wastewater  |               |
| District    |                |          |         |          |       |          |         |            |       |            |             |               |
| Taupo       | 2              | 0        | 0       | 0        | 2     | 0.01     | 0.03    | 0.40       | 0.4   | 0          | 0           | 2             |
| WBOP        | 22             | 0        | 0.1     | 0        | 22    | 1.3      | 6.7     | 82         | 6     | 0.0003     | 0.01        | 112           |
| Tauranga    | 36             | 0.5      | 0.1     | 0.4      | 37    | 3.4      | 16.9    | 207        | 227   | 10.0       | 0.02        | 275           |
| Rotorua     | 30             | 0.5      | 0.001   | 0        | 30    | 2.1      | 10.3    | 126        | 139   | 2.4        | 0.02        | 171           |
| Whakatane   | 19             | 0.1      | 0.2     | 0        | 19    | 1.1      | 5.5     | 67         | 74    | 0          | 0.01        | 93            |
| Kawerau     | 2              | 0        | 0.003   | 0        | 2     | 0.2      | 1.1     | 14         | 15    | 0          | 0           | 17            |
| Opotiki     | 5              | 0        | 0       | 0        | 5     | 0.3      | 1.5     | 19         | 21    | 0          | 0.002       | 26            |
| Total       | 115            | 1.1      | 0.3     | 0.4      | 117   | 8.4      | 42.1    | 516        | 567   | 12.4       | 0.06        | 696           |
| Urban areas |                |          |         |          |       |          |         |            |       |            |             | 0             |
| Tauranga    | 33             | ~        | 0.01    | 0.4      | 33    | 3.3      | 16.2    | 199        | 218   | 10         | 0           | 262           |
| Rotorua     | 20             | 0.5      | 0.00    | 0        | 20    | 1.8      | 8.9     | 109        | 119   | 2.4        | 0           | 142           |
| Whakatane   | 4              | 0        | 00.0    | 0        | 4     | 0.7      | 3.6     | 44         | 48    | 0          | 0           | 52            |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

| - <b>-</b> |
|------------|
| -          |
| 0          |
| Q          |
| <b>D</b>   |
| Ř          |
| _          |
| <b>D</b>   |
|            |
|            |
| ш.         |
|            |

# Table B-12 Formaldehyde (Tonnes / Year)

| Formaldehyde    |                | Trans    | port |          |       |          | Dor     | nestic     |       | Industrial | TOTAL FORMALDEHYDE |
|-----------------|----------------|----------|------|----------|-------|----------|---------|------------|-------|------------|--------------------|
|                 |                |          |      |          |       | Backyard | Home    |            |       |            |                    |
| tonnes per year | Motor vehicles | Aviation | Rail | Shipping | Total | burning  | heating | Lawnmowing | Total |            |                    |
| District        |                |          |      |          |       |          |         |            |       |            |                    |
| Taupo           | -              | 0        | 0    | 0        | ~     | AA       | AN      | 0.2        | 0.2   | 0          | 1                  |
| WBOP            | 6              | 0        | -    | 0        | 10    | NA       | AN      | 33         | 33    | 0.002      | 43                 |
| Tauranga        | 16             | 4        | 0    | 2.3      | 22    | NA       | ΝA      | 83         | 83    | 1.7        | 107                |
| Rotorua         | 13             | 4        | 0    | 0        | 17    | AN       | AN      | 51         | 51    | 0.02       | 67                 |
| Whakatane       | 8              | ~        | -    | 0        | 10    | NA       | AN      | 27         | 27    | 0.04       | 37                 |
| Kawerau         | -              | 0        | 0.0  | 0        | ~     | AN       | AN      | 5          | 5     | 0.4        | 7                  |
| Opotiki         | 2              | 0        | 0    | 0        | 2     | AA       | AN      | ω          | 8     | 0          | 10                 |
| Total           | 50             | 6        | 2    | 2.3      | 63    | NA       | NA      | 206        | 206   | 2.2        | 271                |
| Urban areas     |                |          |      |          |       |          |         |            |       |            |                    |
| Tauranga        | 14             | 4        | 0.2  | 1.9      | 20.3  | ΝA       | NA      | 80         | 80    | 1.7        | 102                |
| Rotorua         | 8              | 4        | 0    | 0        | 12    | NA       | NA      | 43         | 43    | 0.01       | 56                 |
| Whakatane       | 2              | 0        | 0.04 | 0        | 1.85  | AN       | ΝA      | 18         | 18    | 0.02       | 19                 |

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC

| 1-3 Butadiene   |                | Τn       | ansport |          |       |          | Do      | mestic     |       | TOTAL 1-3 BUTADIENE |
|-----------------|----------------|----------|---------|----------|-------|----------|---------|------------|-------|---------------------|
|                 |                |          |         |          |       | Backyard | Home    |            |       |                     |
| tonnes per year | Motor vehicles | Aviation | Rail    | Shipping | Total | burning  | heating | Lawnmowing | Total |                     |
| District        |                |          |         |          |       |          |         |            |       |                     |
| Taupo           | 0.2            | 0        | 0.0     | 0        | 0.2   | ΝA       | NA      | 0.2        | 0     | 0                   |
| WBOP            | 2              | 0        | 0.1     | 0        | 2     | ΝA       | NA      | 49         | 49    | 52                  |
| Tauranga        | 4              | 0.5      | 0.1     | 0.4      | 4     | ΝA       | NA      | 124        | 124   | 129                 |
| Rotorua         | ო              | 0.5      | 0.0007  | 0        | ю     | ΝA       | NA      | 76         | 76    | 79                  |
| Whakatane       | 2              | 0.1      | 0.1     | 0        | 2     | AN       | NA      | 40         | 40    | 43                  |
| Kawerau         | 0.2            | 0        | 0.0     | 0        | 0.2   | ΑN       | NA      | ω          | 80    | 8                   |
| Opotiki         | 0.5            | 0        | 0.0     | 0        | 0.5   | AN       | NA      | 11         | 1     | 12                  |
| Total           | 11             | 1        | 0.3     | 0.4      | 13    | NA       | NA      | 310        | 310   | 323                 |
| Urban areas     |                |          |         |          |       |          |         |            |       |                     |
| Tauranga        | ო              | 0.5      | 0.01    | 0.31     | 4.0   | ΝA       | NA      | 119        | 119   | 123                 |
| Rotorua         | 2              | 0.5      | 00.0    | 00.00    | 2.4   | ΝA       | NA      | 65         | 65    | 68                  |
| Whakatane       | 0              | 0        | 00.0    | 00.00    | 0.4   | ΝA       | NA      | 26         | 26    | 27                  |
|                 |                |          |         |          |       |          |         |            |       |                     |

# Table B-13 1-3 Butadiene (Tonnes / Year)

SINCLAIR KNIGHT MERZ

WR01503:WR01503W0005.DOC