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ABSTRACT

Groundwater that feeds streams and springs in the Lake Rotorua catchment has 15 - 130
years mean residence times in the aquifer. These long residence times of the water in the
ground result in large time-delays of nitrogen loading from historical agricultural and urban
development in the catchment. Currently observed increases in nitrogen loading in surface
and groundwater are mostly due to the delayed impact of catchment development that
occurred around 55 years ago. Further increases in nitrogen are expected.

The time-dependence of the arrival of water to the Lake that was recharged since landuse
development in the 1950’s was calculated using the age distribution of the water derived
from tritium, CFC and SF¢ data. The arrival of post-landuse water over time was then used to
estimate the nitrogen load to the Lake for the time prior to landuse development, for the time
since then, and for the future. Excellent matches between measured N loads over the last
decades and predicted loads demonstrate the robustness of the approach, and that the
model assumptions used for future predictions are reasonable.

Future groundwater-derived nutrient loads are listed below. No changes are expected in
phosphorus loads via groundwater as long as landuse-derived P continues to be absorbed
by the volcanic soils in the catchment.

Total N loading [t/y] Total P loading [t/y]
pre- steady- steady-

landuse 2005 2055 2105 2155 2205 state state
Major streams
Utuhina 6 31 39 42 43 43 43 25
Ngongotaha 6 3 3 35 35 35 35 2.2
Waiteti 4 40 49 51 52 52 52 1.6
Awahou 7 57 77 85 89 91 92 3.3
Hamurana 11 53 78 92 102 108 118 6.3
Waiohewa 1 13 16 17 17 17 17 0.7
Waingaehe 1 10 20 25 28 30 35 0.7
Puarenga 5 42 51 52 53 53 53 3.6
Waiowhiro* 1 8 10 10 10 11 11 0.7
Other
Minor streams 1 14 17 18 18 18 18
Lake-side springs 1 13 14 15 15 15 15
groundwater direct 15 104 124 129 130 131 131

Total 60 420 532 572 592 602 619

The nitrogen loading to Lake Rotorua prior to major landuse development in the catchment in
the 1950's was calculated to be 60 t/year. This has slowly increased to a present nitrogen
load of 420 tly, delayed by long travel times of the groundwater. The nitrogen loading is
expected to further increase to 532 t/y in 50 years (25% increase from current), 572 t/y in 100
years (35% increase from current), and to 619 t/y at steady-state (47% increase from
current).

About 75% of the groundwater-derived nitrogen loading at steady-state enters Lake Rotorua
via the nine major streams, and about 20% enters the Lake from direct groundwater inflow to
the lake bed. The loading estimate for the direct groundwater has the largest uncertainty
because very limited age and chemistry data is available. Lake side springs and minor
streams together contribute only about 5% of the total nitrogen load to Lake Rotorua.
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Hamurana, Awahou and Waingaehe streams are expected to show the largest increases in
N loading in the future because they contain the oldest water, and Hamurana and Awahou
streams will have the largest increase in nitrogen mass loading because they have the
largest flow. Utuhina, Waiteti, and Puarenga streams are expected to have medium
increases in nitrogen loading because of younger water age and lower flow. Ngongotaha,
Waiohewa, and Waiowhiro streams are expected to have little further increase in N loading
because of low flow or steady-state already reached.

Landuse intensification that has occurred within the last 20 years is not yet reflected in the
current nitrogen prediction model because information on the timing and amount of
intensification was not yet available. The present nitrogen prediction model assumes that the
nitrogen input in the catchment from landuse development has remained relatively constant
since the 1950’s. The current predictions would therefore represent a lower limit to which the
more recent nitrogen loads would have to be added.

If more information on timing and amount of landuse changes becomes available, the N load
predictions can be refined to incorporate landuse change in several stages by calculating the
predicted N load for each stage and adding these. Positive (intensification) or negative
(retirement) changes can be considered.

The large groundwater system of the Lake Rotorua catchment responds delayed by decades

to landuse changes. These timeframes will need to be considered carefully for any possible
mitigation options in the catchment.

KEYWORDS

Nitrogen contamination, groundwater, nitrogen predictions, age distribution, tritium, CFC, SFe
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1.0 INTRODUCTION

Environment Bay of Plenty is developing an action plan for Lake Rotorua to improve Lake
water quality. An understanding of the future Lake catchment loads is needed for defining the
nutrient reduction target for the Lake. This information is vital for guiding decision making for
the action plan. Environment Bay of Plenty commissioned GNS Science to provide an
updated analysis of the predicated nutrient contribution from the major surface and
groundwater flows to the lake using the latest age dating and water quality information
collected by GNS Science and Environment Bay of Plenty.

Morgenstern et al. (2004) showed that for the groundwater-fed major streams the mean
residence times of the water in the aquifer are between 15 - 130 years (Figure 1.1). These
long groundwater residence times result in large time-delays; nutrient loads from the
historical agricultural and urban development of the catchment arrive at the lake only after
many decades. Currently observed increases in nitrogen loading are mostly a result of the
delayed impact of catchment development from around 55 years ago.

Time trends of nutrient loading of this report will focus on nitrogen only as no major change in
phosphorus load is expected. Landuse derived phosphorus is absorbed by the volcanogenic
soils in the catchment. This is demonstrated by the fact that untii now no increased
phosphorus levels were observed in younger groundwaters recharged after 1950
(Morgenstern et al., 2004). Landuse derived phosphorus has not yet leached into the older
groundwater. Therefore, no change in P load is expected as long as landuse-derived P stays
absorbed in the soil.

Previous chemical and age dating studies of groundwater and the nine major spring-fed
streams in the Lake Rotorua catchment by Morgenstern et al. (2004) showed that the natural
background N concentration in groundwater was 0.14 mg/L, as determined from old
groundwater (pre-landuse intensification), and the average current N concentration is 1.6
mg/L, as determined from young groundwater (post-landuse intensification). This increase in
N concentration is due to landuse intensification and will result in further increases in N loads
to the Lake.

The objective of this report is to use the water age distribution to predict the arrival of post-
landuse water in order to estimate the future nitrogen loads to Lake Rotorua from the nine
major streams draining from the Lake Rotorua catchment, from minor streams, from lake-
side springs, and from direct groundwater inflow through the lake bed.

GNS Science Report 2006/10 1
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Figure 1.1. Mean water residence time of the major streams to Lake Rotorua near the stream mouth. The related

fractions of exponential (mixed) flow are listed in Table. 5.1.
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2.0 METHODOLOGY OF PREDICTING FUTURE NITROGEN LOADS

The current dissolved nitrogen concentrations in waters that are now discharging to the lake
are still relatively low due to dilution with old pristine waters. These concentrations are
expected to increase further in the future because of the progressive arrival of water
recharged after catchment development (Figure 2.1).
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Figure 2.1. The tip of the iceberg. A water sample from a well or the stream or lake contains fractions of both
young and old groundwater because long and short travel flowlines converge at the well or spring. For water
mixtures with mean residence time >50 years, only a fraction of the water is young enough to show the
contamination (hatched). Large fractions of the discharging water are still uncontaminated old groundwater. But
in time, the front of contaminated water moves forward (see arrows), and a higher fraction of contaminated water
will discharge into the well/stream/lake. A further increase in N loading is expected.

Large amounts of groundwater have insidiously become contaminated with nitrogen over the
last 50 years because of the large groundwater reservoirs in the Rotorua aquifers with
related long groundwater travel times. The response time of the groundwater system to lake
water mitigation action will be similar. It will also take decades until the nitrogen
contaminated water is flushed out of the aquifers.

The age distributions of the stream and groundwater (Morgenstern et al. 2004) are used to
project the future arrival of water to the lake that was recharged since landuse development
in the catchment. The future N loading was scaled up according to the increase in post-
landuse water, assuming a constant N concentration of the post-landuse water which is
specific for each sub-catchment.

The age distribution is defined by two parameters, mean residence time, and fraction of
exponential (mixed) volume within the total flow volume of the combined exponential-piston
flow (Morgenstern et al. 2004, Appendix 1).

For water with a short mean residence time of less than 20 years the increase in nitrogen
load, starting 55 years ago, is now completed and steady-state has been reached. For
waters with a long mean residence time of 50-100 years, the delay in nitrogen arrival is
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beyond the current timeframe. The nitrogen load is therefore not yet at steady-state, and
further increases in load are expected. Steady-state nitrogen load will only be reached after
more than hundred years.

The predicted nitrogen loads in this report are calculated on the assumption that the nitrogen
input to the groundwater started from a specific date (55 years ago for most of the
catchment), and has continued to remain constant.

However, further landuse intensification has also occurred over the last 20 years. This recent
landuse intensification is not yet considered in the following N load predictions because
information on the timing and amount of intensification was not yet available. However, some
recent landuse changes were considered in this report by using a more recent average start
of N input (1965). This enabled for good matches between the calculated and the measured
N loads in the past, confirming that this model assumption produces realistic N load
predictions for the future.

If more detailed information on timing and amount of recent landuse intensification becomes
available, the N load predictions can be refined to incorporate landuse change in several
stages by calculating the predicted N load for each stage. To obtain the total predicted load,
the predicted N load of the more recent landuse change is simply added to the predicted N
load of the previous landuse change.

For the N load prediction only the present N load is used in combination with the age
distribution. Previous N load data over the last decades are not necessary for the prediction
but if they are available, they provide a valuable tool to check if the assumption of the
average starting date in the catchment is realistic. For example, if the average starting point
of nitrogen contamination was at a significantly different time then 1950, the measured N
load data between 1950 and 1980 would not match the predicted curve. Checking against
previous data is also possible for more recent landuse changes within the last 10 to 20 years
by using annual N loads instead of the four yearly means.

The historic nitrogen data provide a useful tool for an additional calibration; calibrating the
model against the past trend enables for a more robust prediction of the future trend.

3.0 NITROGEN COMPONENTS

The previous study (Morgenstern et al. 2004) showed that nitrate (NO3) is clearly the major
component of nitrogen in the Rotorua groundwater system. Nitrite (NO,) and ammonia (NH,)
are negligible for most oxic waters. However, NNN nitrogen (NNN = nitrate (NO3) + nitrite
(NO,)) was used as the measure of nitrogen loading to the lake because most historic
nitrogen data reported from Environment Bay of Plenty is available as NNN nitrogen. If NO,
was not reported, it was assumed zero.

Total Kjeldahl Nitrogen (TKN) was not considered in the N prediction via the groundwater

because it mostly originates from decaying organic matter on the surface and therefore is not
controlled by the groundwater.
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4.0 TIME-TRENDS IN NITROGEN LOADING

In the following chapter, time-trends in nitrogen loading to Lake Rotorua are discussed for all
significant nitrogen sources from streams and groundwater. The nitrogen loading for the
major streams is based on excellent recent and historic data for N load and age dating. For
minor streams, direct groundwater inflow via the lake bed, and springs near the lake, there is
only sparse data available. Therefore, assumptions had to be used for the age distributions
and nitrogen concentrations of the water. Geothermal water was not considered because the
nitrogen load from this is negligible.

4.1. MAJOR STREAMS
Stream water dating is difficult because:

e Complementary dating methods like CFCs and SFg are not available for resolving
ambiguous interpretations; the gases in the stream water equilibrate quickly with the air
when the water gets in contact with the air, and

e Mixtures of water can potentially be very complicated if different hydrologic systems with
different hydrogeology and different residence times discharge into the same stream.

However, reliable age distributions were obtained for most of the streams because high-
quality historic tritium data are available that enable us to accurately track the passage of the
1960's bomb-tritium peak through the groundwater system. The age distribution data is
summarised in Table 5.1 (p. 18). The methodology of age distribution is described in
Morgenstern et al. (2004, Appendix 1), and the parameters of age distribution are
summarised in Table 4 of this report.

Predicted nitrogen loads are calculated based on water quality and flow data collected by
Environment Bay of Plenty for the period of 2003 to 2006 (Rutherford, 2006). Previous N
load predictions combined flow data for 1976-1977 (from Hoare 1980) with nutrient data for
1992-1995 and 2002-2003 (from Rutherford 2003). However, flows were higher by ~10-20%
in 1976-1977 than in 1992-2003. This resulted in slightly higher N load bias in Morgenstern
et al., (2004). Rutherford 2006 collated data from several sources (principally NIWA and
Environment Bay of Plenty hydrology archives) and showed that flows have been
significantly lower in recent years (1992-2006) than during the earlier studies of Hoare (1975-
1980) and Fish (1965-1970).

The rate of nitrogen discharge from the large reservoir in the aquifer is dependent on the
rainfall rate. In a period of higher rainfall rate the discharge rate from the aquifer is also
higher, with related higher total N load at this time. The N concentration was found to be
relatively independent on the flow rate, in good agreement to the high degree of groundwater
mixing in these highly porous volcanic aquifers. Because the rate of N discharge from the
aquifer depends on the stream flow rate, wrong N load time trends could be indicated by
changing stream flow. As an example, higher flow rates in the 1967-80 period with related
higher N discharge compared to now could wrongly suggest reaching steady-state earlier.

Prediction of future nitrogen loading in this report is based on the current stream flow rate of
the period 2002-06. Because the N discharge rate is dependent on the stream flow rate, all
past N loads were adjusted to the current stream flow rate (i.e. actual N concentration
multiplied with 2002-06 flow rate) to ensure that the same conditions are applied for
calculation of past N loads and for calculation of time trends, and that both are comparable.

GNS Science Report 2006/10 5



4.1.1 Hamurana Stream

Hamurana Stream water has a very high mean residence time of 110 years within its
catchment, and therefore still contains a large fraction of pristine pre-landuse water. The
pristine old water is progressively being flushed out of the aquifer, and accordingly the
fraction of water recharged since landuse intensification will increase in the future. The
nitrogen loading from Hamurana Stream will therefore continue to increase significantly. The
continued increasing trend of measured N loads over the last decades (Figure 4.1) clearly
indicates that Hamurana Stream has not yet reached steady-state N loading.

The predicted future nitrogen loads calculated from the increase in fraction of post-landuse
water (Figure 4.1, solid line) shows that the N load will double when the steady-state
situation is reached, increasing from currently 53 t/year to 118 tly.

The excellent match between the measured historic nitrogen loads and the predicted load
indicates that:

(i) the assumptions used for future projection are realistic, and

(i) the groundwater reservoir is well mixed and/or the nitrogen contamination is wide-
spread in the Hamurana Stream catchment.
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Figure 4.1. Predicted and measured NNN nitrogen loads for Hamurana Stream.
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4.1.2. Awahou Stream

The water of Awahou Stream has a mean residence time of 61 years and is closer to steady-

state comp

ared to the Hamurana Stream. Awahou Stream is expected to reach a nitrogen

loading of 92 t/y in 2200 (Figure 4.2), an increase of 35 t/y above current measured levels of

57 tly.

The excellent match between the measured historic nitrogen loads and the predicted loads
calculated from the fraction of water from post catchment land development indicates that:

0] the assumptions used for future projection are realistic, and
(i) the groundwater reservoir is well mixed and/or the nitrate contamination is wide-
spread in the Awahou Stream catchment.
100 ‘ ‘ I I 120
Awahou Stream
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Projected nitrate load for 2 " —
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80 2
/ 2 /
/ Z 40
= Ll
20
2 60 /
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Figure 4.2. Predicted and measured NNN nitrogen loads for Awahou Stream.
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4.1.3. Waiteti Stream

Waiteti Stream water has a mean residence time of 40 years which is significantly younger
than that of Hamurana and Awahou Streams, which all drain the north-western Mamaku
Plateau. Because the water is younger, Waiteti Stream is closer to steady state. Figure 4.3
shows that the expected increase in N loading is only 12 t/y above current loading of 40

t/year.
The good match between the measured historic nitrogen loads and the predicted loads
calculated from the water fraction from post catchment land development (1950) indicates
that:
0] the assumptions used for future projection are realistic, and
(ii) the groundwater reservoir is well mixed and/or the nitrate contamination is wide-
spread in the Waiteti Stream catchment.
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Figure 4.3.

Predicted and measured NNN nitrogen loads for Waiteti Stream.
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4.1.4. Ngongotaha Stream

Ngongotaha Stream catchment discharges the youngest water to Lake Rotorua. It has a
mean residence time of 15 years which is significantly younger than streams and springs
sourced from the Mamaku ignimbrite aquifer (for example Te Waireka Spring 39 years,
Hamurana stream 110 years). The Ngongotaha Stream receives significant recharge from
the Ngongotaha lava dome that has significantly shorter residence time. This indicates that
the lava dome formations have significantly lower aquifer water storage capacity than the
Mamaku Ignimbrite aquifer.

With the mean residence time of 15 years, Ngongotaha Stream is expected to reflect already
steady-state N load in relation to N inputs that occurred several decades ago.

When 1950 is used as the starting date for catchment landuse development the predicted N
loading does not match the measured loads in the 1970s (Figure 4.4, broken line). The
measured N loading in the 1970’s was significantly lower than the prediction calculated with
a starting date of 1950. This strongly suggests that average landuse development in the
Ngongotaha catchment started later than in the other sub-catchments in north-western Lake
Rotorua catchment. An excellent match between the calculated N loading and the measured
previous N loading (Figure 4.4, solid line) is achieved by using 1965 as the commencement
date in the prediction model.

However, the starting date of land-use development is not critical to the assessment of the
steady-state nitrogen loading in the Ngongotaha Stream catchment because the water
discharging from the Ngongotaha catchment is young enough to have reached steady-state
already for catchment developments that occurred before 1965. Therefore the nitrogen
loading for Ngongotaha stream catchment is expected to remain close to 35 tly.

[N
IN)
=]

100 \ \ \ \

Ngongotaha Stream
A A A Nload adjusted to 2004 flow
Projected N load for
continued input at current level
(start of N loading 1965)

=
o
S

©
o

80 —

Projected N load for
— — — — continued input at current level
(start of N loading 1950)

N
o

NNN Nitrogen [t/y]
3

IN)
o
~
Y

60

40 i
///
s

/
/
20

|
/
/
/
natural L

0

o

2000 2100 2200 2300 2400
year

Rotorua/Figures/Nitrogen Ngongot Stream3

NNN Nitrogen [t/y]

1940 1960 1980 2000 2020 2040 2060 2080 2100
year

Figure 4.4. Predicted and measured NNN nitrogen loads for Ngongotaha Stream.

GNS Science Report 2006/10 9



4.1.5. Utuhina Stream

Water discharging from the upper catchment at the Utuhina Springs is very old water with
mean residence time of 120 years. This water is sourced from the Mamaku Ignimbrite.
However the age of the water discharging at the Utuhina Stream mouth is considerably
younger with a mean residence time of 48 years. This is due to the significant contribution of
younger age water that is received from the Ngongotaha rhyolite lava dome sub-catchment.
Despite the mixture of waters from two different geologic formations, the age distribution in
the water at the stream mouth is relatively continuous and can still be described by the
exponential piston flow model (Morgenstern et.al. 2004, Appendix 1). This is indicated by the
long-term tritium data, and supported by the reasonably good match between the measured
historic nitrogen loads and the predicted loads calculated from the fraction of post-landuse
water (Fig. 4.5).

Steady state N loading is expected to increase to 42 t/y at 2100, which is an increase of 10
t/year above the currently measured N load of 31 tfy.

The good match between the measured and predicted nitrogen loads calculated from the
water fraction from post catchment land development (1950) indicates that the groundwater
reservoir is well mixed and/or the nitrate contamination is wide-spread in the catchment.
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Figure 4.5. Predicted and measured NNN nitrogen loads for Utuhina Stream.
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4.1.6. Waiohewa Stream

Steady-state nitrogen loading has nearly been reached for the water discharging from the
Waiohewa catchment with a mean residence time of 40 years (Fig. 4.6). The N loading in
2100 is expected to reach 17 t/year, an increase of 4 t/ly above current measured N load of

13 tly.

The good match between measured and predicted nitrogen loads calculated from the water
fraction from post catchment land development (1950) indicates that:

0] the assumptions used for future projection are realistic, and

(i) the groundwater reservoir is well mixed and/or the nitrate contamination is wide-
spread in the Waiohewa Stream catchment.
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Figure 4.6. Predicted and measured NNN nitrogen loads for Waiohewa Stream.
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4.1.7. Waingaehe Stream

Water discharging from the Waingaehe catchment has a mean residence time of 127 years.
This is the oldest water of all of the catchments. Waingaehe stream will therefore take the
longest of all streams to Lake Rotorua to reach steady-state. Steady-state nitrogen loading
for the Waingaehe catchment will be reached at 2400 with a load of 34 t/y, an increase of 14
t/ly above current measured level of 20 t/y (Figure 4.7).

When 1950 is used as the starting date of catchment landuse development the measured
nitrogen loading does not match the predicted loads very well (Figure 4.7, broken line). This
suggests that the average nitrogen loading started later in the Waingaehe Stream catchment
compared to the total Rotorua catchment average of 1950. Using alternatively 1965 as the
commencement date for the prediction model provides a good match to the measure data.

A good match between the measured and the predicted nitrogen loads calculated from the
water fraction from post catchment land development in 1965 indicates that the assumptions
used for future projection sufficiently describe the catchment landuse change.

The later starting date (1965) of N loading results in a steeper curve with a 30% increased
steady-state N load compared to using the Rotorua catchment average of 1950 (the
difference between the broken and the solid line, Figure 4.7).
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Figure 4.7. Predicted and measured NNN nitrogen loads for Waingaehe Stream.
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4.1.8. Puarenga Stream

The current nitrogen load of Puarenga Stream is dominated by leakage from the recent land
disposal of treated sewage from Rotorua into Waipa stream via irrigation at Whakareware
waForest (Rutherford 1989, 2003, Park 1999, 2003). Therefore, the methodology of N load
prediction from the wider Puarenga catchment has to be applied only to the data prior to the
treated sewage disposal which commenced in 1991.

Puarenga Stream water has a relatively young mean residence time of 37 years that is
already close to steady-state relative to land-use changes that started in the 1950’s.
Therefore, the expected increase in N loading from landuse changes in the catchment
(excluding the treated sewage disposal) is only 6 t/y (Figure 4.8, solid line).

The measured post-1990 data in Figure 4.8 clearly demonstrates that the treated sewage
disposal has significantly increased the N loading in Puarenga Stream above the expected N
load from landuse (solid line).

For calculation of the future N load in Puarenga Stream we added to the predicted N load
from landuse a constant N load of 30 t/y (broken line), which is the consent limit for the
sewage treatment plant. The consent limit was considerably exceeded between 1998 and
2003 as reported by Park (2003). The N load average at 2002 in Figure 4.8 is therefore
higher then the predicted total N load at steady-state. Since 2003 the N load in Waipa stream
has returned to just below the consent limit (Park 2003).

The total N load of Puarenga Stream is expected to reach about 53 t/y at steady-state if the
load from the sewage treatment plant remains constant at 30 t/y.
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Figure 4.8. Predicted and measured NNN nitrogen loads for Puarenga Stream.
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4.1.9. Waiowhiro Stream

Water in the Waiowhiro Stream has a mean residence time of 42 years. This is deduced from
Rainbow Spring because Waiowhiro Stream was not sampled in 2003. Rainbow Spring is the
main contributor to Waiowhiro Stream.

The measured N load in the 1970’s is higher than the predicted load (Fig. 4.9). This may
indicate that N loading started earlier than 1950, or that some of the water from the
Waiowhiro catchment that is derived from the Ngongotaha rhyolite lava dome aquifer has a
high fraction of piston flow in the groundwater system. This means that the landuse nitrogen
load signal would have a sharper front. However, this is not critical for the future nitrogen
load prediction because Waiowhiro Stream is already near steady-state. No significant
increase in nitrogen load is expected.
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Figure 4.9. Predicted and measured total nitrogen loads for Waiowhiro Stream.
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4.1.10. Summary of Major Streams Time Trends

Excellent matches between the modelled and measured nitrogen loads have been achieved
for most of the streams. This indicates that the model assumption of a starting date of the
nitrogen loading to the groundwater at around 1950 is realistic for most of the Lake Rotorua
catchment. Only the Ngongotaha and Waingaehe streams have measured historic nitrogen
loads in the 1970s that lagged the modelled nitrogen loads, thereby showing that significant
landuse changes occurred more recently than 1950 in these catchments. An average starting
date of 1965 provides a good match between the model output and measured data.

The current nitrogen load of Puarenga Stream is dominated by recent leakage from land
disposal of treated sewage from Rotorua. The methodology of N load prediction from the
wider Puarenga catchment can therefore only be applied to the nitrogen load data prior to the
treated sewage disposal.

Only Ngongotaha stream has water with a relatively young mean residence time of 15 years
and therefore is therefore already at steady state with historic landuse changes. No future
increase in nitrogen load is therefore expected in relation to changes that occurred several
decades ago.

The following streams have a mean residence time that is similar to the length of time when
the major land-use changes occurred: Waiteti, Utuhina, Waiohewa, Puarenga, Waiowhiro.
Only slight increases in nitrogen loading are expected.

Hamurana, Awahou and Waingaehe Streams have mean residence times significantly
greater then the length of time to the landuse changes. Therefore, these streams are still far
from steady-state. The nitrogen load from Hamurana and Waingaehe streams is expected to
more than double in the future, and the load from Awahou Stream is expected to nearly
double.

More recent land-use changes (within the last 20 years) have not yet been considered in the
prediction model, because detailed information on landuse changes is not yet available.

The results of the predicted nitrogen loads are summarised in Table 5.1.
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4.2 MINOR STREAMS

Of the minor streams, only Hauraki Stream had been sampled for age dating, giving a mean
residence time of 40 years. Figure 4.10 shows the nitrogen load prediction for Hauraki
Stream. The nitrogen load is negligible compared to major streams (note the different scale
on the axis). The measured nitrogen concentration in Hauraki Stream of 0.2 mg/L
(Morgenstern et al. 2004) is near background level, despite the nitrogen load being already
at steady-state. The low nitrogen concentration in Hauraki Stream may be explained by N
uptake in the channel due to the normally very low or ephemeral flow.
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Figure 4.10. Predicted and measured total nitrogen loads for Hauraki Stream.

To predict the nitrogen load from the combined minor streams, a total flow of 249 L/s
(Rutherford, 2006), and an average nitrogen concentration of 1.8 mg/l (deduced from the
total nitrogen load) was used. A mean residence time of 40 yrs with 95% mixed flow (which
best reflects the age distribution of other small streams and lake side features) were
assumed. The predicted nitrogen load for minor streams is calculated to be 18.5 t/y (Table

5.1).

4.3 LAKE-SIDE GROUNDWATER SPRINGS

A total flow of 141 L/s was estimated by White (personal communication) for small lake-side
spring inflows that are not captured in major stream flows. These form part of the ‘ungaged
catchment’ of Hoare (1980). The data source for these lake-side springs is from Reeves et

al. (2005).

Three mg/L total nitrogen is used for calculating the nitrogen load, which is approximately the
average total nitrogen concentration of spring water near the lake. Groundwaters near the
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lake appear to have higher nitrogen concentrations than the large springs and streams that
discharge water recharged from further up in the catchment.

Water age has been analysed up to now for only one lake-side spring that discharges near
the Rotorua airport. The age distribution of the airport spring is used here to represent all
lake side springs. The airport spring has a mean residence time of 27 years and 70% mixed
flow. The small springs near the lake appear to contain younger water than the large springs
and streams that discharge water that travelled from further up the sub-catchments.

With these assumptions, the total nitrogen load of all lake-side springs at steady-state is
calculated to be 14.5 t/y (Table 5.1).

4.4 DIRECT GROUNDWATER FLOW VIA THE LAKE BED

No direct groundwater flow via the lake bed has been sampled so far for age dating or
chemistry analysis. The following assumptions were used for the calculation of the nitrogen
load via direct groundwater flow: mean residence time of 37 years with 100% mixed flow
(near-lake springs appear to have younger water than the major streams), and a nitrogen
concentration of 1.0 mg/L. However, there are indications that the N concentration of 1 mg/L
is too low to represent the groundwater direct inflow. Near-lake groundwaters generally seem
to contain nitrogen concentrations of about 3 mg/L. Until such time as there is data available
to verify the N concentration, 1.0 mg/L is used. The N load below may therefore be
considered as a minimum value only.

The direct groundwater inflow to Lake Rotorua via the lake bed has been estimated by White
(2006) via groundwater flow modelling to be 4.5 m®s. Hoare (1980) calculated the
groundwater direct flow from the water balance to be 2.1 m*s. We used the mean value
between Hoare and White of 3.3 m%/s.

On the basis of these assumptions, the total nitrogen load of the direct groundwater flow via
the lake bed was calculated to be 131 t/y at steady-state. However, it must be emphasised
that all data used for calculation of the direct groundwater inflow are rough estimates and
therefore the total nitrogen load of the direct groundwater flow via the lake bed is subject to
large errors.

5.0 PREDICTED NITROGEN LOADS

Table 5.1 summarises the predicted total nitrogen loads into Lake Rotorua for the nine
individual major streams, the minor streams, the lakeside springs, and the direct groundwater
inflow via the lake bed. The total nitrogen loads were calculated for:

e Pre-land-use (background),
o Present time (2005),
e Future: 50 years (2055), 100 years (2105), 150 years (2155), 200 years (2205), and

e Steady state (nitrogen load after all old pristine pre-land-use water in the aquifer is
replaced by landuse-affected water).
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Table 5.1. Total nitrogen load before land-use development, for the present, for the years 2055, 2105, 2105, and 2155, and for steady-state. The age distribution parameters E%PM
and MRT are the fraction of exponential (mixed) flow volume, and mean residence time (see Morgenstern et al. 2004). The listed nitrogen concentrations are the current
concentrations, and the bkg concentrations are the background concentrations from the time before land-use development (deduced from old groundwaters in Morgenstern et al.
2004). For calculation of the Total Nitrogen loading, the background N concentration is used for the pre-land-use load, the present N concentration is used for 2005 and the future
predictions. % in the last column is the percentage of each nitrogen contributor at steady-state. For the major streams, flow rates and present nitrogen concentrations were obtained
from Rutherford 2006. For minor streams, lake-side springs and groundwater direct, assumptions were used for the flow rates and present nitrogen concentrations, as explained in the
text.

E%PM MRT] Flow | NNN Concentr. NNN Nitrogen loading [t/y]
rate | Currently Bkg pre-
%] [yrs]| [m¥s1| [o/m®1  [9/m] | landuse | 2005 2055 2105 2155 2205 | steady-state %
Major streams B
Utuhina 100 48 | 1461 ] 0.679 0.14 6.5 31.3 39.1 416 425 428 43.0 6.9
Ngongotaha 80 15,5 1.408 | 0.759 0.14 6.2 33.7 352 352 352 352 35.2 5.7
Waiteti 95 40 | 1.016 1.251 0.14 4.5 40.1 49.0 51.2 51.7 519 52.0 8.4
Awahou 100 61 | 1.530 1.18 0.14 6.8 57.0 77.1 854 89.0 90.6 91.9 14.8
Hamurana 100 110§ 2490 0.671 0.14 11.0 | 527 775 923 101.7 107.6 118.0 19.1
Waiohewa 95 40 | 0.325 1.266 0.14 1.4 13.0 159 16.6 16.8 16.8 16.8 2.7
Waingaehe 100 127 | 0.234 1.37 0.14 1.0 101 202 249 281 30.2 34.7 5.6
Puarenga 100 37 | 1.684] 1.029 0.09 4.8 417 512 524 527 528 52.8 8.5
Waiowhiro* 65 41.5] 0.293| 0.917 0.14 1.3 85 10.2 105 105 105 10.5 1.7
sub total Major Streams 43 288 375 410 428 438 455 73.3
Other
Minor streams (cold) 95 40 | 0.249 1.8 0.14 1.1 141 174 182 184 185 18.5 3.0
Lake-side springs 70 27 1 0.141 3 0.14 0.6 13.3 144 145 145 145 14.5 2.3
groundwater direct 100 37 | 3.300 1 0.14 14.6 104 124 129 130 131 131 21.2
total 60 420 532 572 592 602 619 100
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The predicted nitrogen loads in Table 5.1 are calculated from the increasing fraction of post-
landuse development water that is going to arrive at the lake (see section 2.0). These
predictions are for the assumption that the nitrogen input in the catchment from landuse
development has remained constant and will remain constant in the future. The post-landuse
water that is moving through the large groundwater aquifer system in the lake Rotorua
catchment will discharge to the lake with a time delay of up to more than 100 years.
Therefore, there is still a significant fraction of pristine pre-landuse water flowing into Lake
Rotorua at the present, but in future more landuse affected water will flow into the lake
thereby increasing the N loading to the Lake.

Denitrification processes within the groundwater system are insignificant because the
majority of the groundwaters in the Lake Rotorua catchment are oxidised (Morgenstern et al.
2004). Despite the extremely long travel times through the aquifer, no significant losses of
dissolved nitrogen within the aquifer can occur.

The nitrogen loads of the nine major streams now have slightly lower estimates than
previously reported (Morgenstern 2004) because new flow and water quality data has been
used (see 4.1).

The three largest nitrogen contributors to Lake Rotorua at steady state are Hamurana and
Awahou Streams, and groundwater direct via the lake bed. Due to the old age of the water in
Hamurana and Awahou Streams, the nitrogen load in those two streams will almost double in
future.
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Figure 5.1. Predicted NNN Nitrogen loading to Lake Rotorua
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Figure 5.1 summarises the nitrogen loads presented in Table 5.1. Despite high uncertainty
in the estimates of nitrogen loading via groundwater direct, the following patterns have
emerged:

e The largest contribution of nitrogen loading to Lake Rotorua is via the nine major
streams. This is about 75% of the steady-state N load to the Lake.

e The nitrogen loading via direct groundwater is the second largest component. This is
about 20% of the total N load to the Lake.

e Lake side springs and minor streams together only contribute about 5% of the total
nitrogen load to the Lake.

e Due to the long residence time of the water in the large aquifer system, nitrogen loading
has not yet reached steady-state in respect to landuse changes from 55 years ago. The
future N loading to Lake Rotorua is expected to further increase by approximately 40%.

e The natural pre-landuse nitrogen loading to Lake Rotorua is estimated to be 60 tly, the
current N loading to be 420 t/y, and the future steady-state N loading is expected to
increase to 619 t/y. Compared to the pre-landuse situation, this is an increase of nitrogen
loading by a factor 7 at present, and by a factor 10 at steady-state.
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6.0 CONCLUSIONS

Past, present, and future nutrient loads to Lake Rotorua are shown in Figure 6.1. Nitrogen
loads are shown for each major stream, and for the combined minor streams, the lake-side
springs, and the direct groundwater flow via the lake bed.
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Figure 6.1: Past, present, and future nutrient loads to Lake Rotorua. For the NNN nitrogen loads, the
first (left) N number is the N load at the time before landuse intensification at around 1950, the second
(middle) N number is the present N load, and the third (right) N number is the future N load at steady-
state. Steady-state is reached when all old pristine pre-landuse water is flushed out of the aquifer, and
only water recharged since landuse intensification flows to the lake.

No changes are expected in phosphorus loads via groundwater as a result of landuse
development in the Rotorua catchment because until now landuse-derived P is absorbed by
the volcanic soils in the catchment. The occurrence of P in the old groundwater is due to
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natural leaching from the volcanic aquifer material. P loads shown in Figure 6.1 are the
current Total Phosphorus loads reported in Rutherford (2006), and these are expected to
remain constant as long as landuse-derived P stays absorbed in the soil.

Nitrogen loads, however, are related to landuse changes. Nitrogen travels to the lake with
the groundwater which drains the catchment, with a time delay of up to more than 100 years.
This is the time that the water takes to pass through the large groundwater aquifer system on
its way to the Lake. In order to predict future landuse-derived nitrogen loads, time-trends
were established using age dating of the groundwater to identify the arrival of landuse-
derived nitrogen to the lake, and how much more nitrogen is expected to arrive in the future.
Using the present nitrogen load and the water age time trend data, we have established the
nitrogen load to the Lake for the time prior to landuse development, and into the future.

The NNN nitrogen loading to Lake Rotorua prior to major landuse development of the
Rotorua catchment in the 1950’s was 60 t/year. This has slowly increased to a present NNN
nitrogen load of 420 tly, delayed by long travel times of the water thought the groundwater
aquifers. This loading is expected to further increase in the future to 532 t/y in 50 years, to
572 tly in 100 years, and to 619 t/y at steady-state. This is a further 110 t/y increase in 50
years (25%), and 150 t/y increase in 100 years (35%).

The majority of the nitrogen loading of about 75% at steady-state enters Lake Rotorua via
the nine major streams. The second largest component of about 20% enters the lake with the
direct groundwater inflow via the lake bed. This component has the largest uncertainty
because no age and chemistry data are available so far from direct groundwater flow to the
lake bed. Lake side springs and minor streams together contribute only about 5% of the total
nitrogen load to Lake Rotorua.

If significant landuse intensification has occurred within the last 10 years, then this will not yet
be captured by the present model because landuse intensification in several stages is not yet
considered in the nitrogen load predictions because information on the timing and amount of
intensification is not yet available. The current predictions would therefore represent a lower
limit to which the most recent nitrogen loads would have to be added.

The present prediction model assumes that the nitrogen input in the catchment from landuse
development has remained relatively constant and will remain constant in the future. If more
information on timing and amount of landuse changes becomes available, the N load
predictions can be refined to incorporate landuse change in several stages by calculating the
predicted N load for each stage. To obtain the total predicted load, the predicted N load of
the more recent landuse change is added to the predicted N load of the previous landuse
change. Positive (intensification) or negative (retirement) changes can be considered.

The large groundwater system of the Lake Rotorua catchment responds delayed by decades

to landuse changes. These timeframes will need to be considered carefully for any possible
mitigation options in the catchment.
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