

Kopeopeo Remediation Project

Bay of Plenty Regional Council

Baseline Ambient Air Monitoring Summary

Issue

23 September 2015

Kopeopeo Remediation Project

Project no:	AE04197
Document title:	Baseline Ambient Air Monitoring Summary
Document No.:	
Revision:	Issue
Date:	23 September 2015
Client name:	Bay of Plenty Regional Council
Client no:	
Project manager:	Deborah Ryan
Author:	C Bender
File name:	I:\AENVW\Projects\AE04197\Technical\Air Monitoring Data\Kopeopeo Remediation Project-Baseline monitoring results.docx

Jacobs New Zealand Limited

Level 3, 86 Customhouse Quay, PO Box 10-283 Wellington, New Zealand T +64 4 473 4265 F +64 4 473 3369 www.jacobs.com

© Copyright 2015 Jacobs New Zealand Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This report has been prepared on behalf of, and for the exclusive use of Jacobs' Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Document history and status

Revision	Date	Description	Ву	Review	Approved
Draft V1	22/7/15	Draft for internal review	C Bender	D Ryan	
Draft V2	23/7/15	Draft for client review	C Bender	B Love	
Issue	23/9/2015	Issue	C Bender	D Ryan	

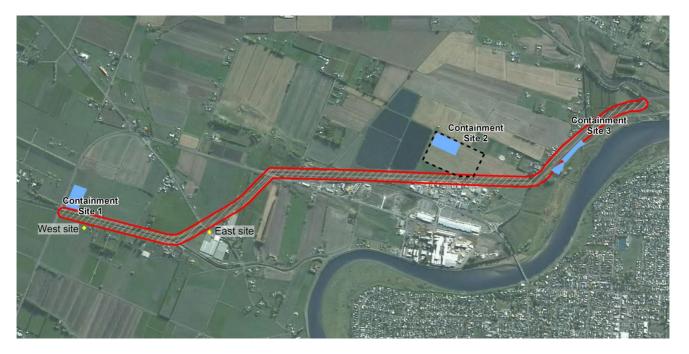
Contents

3
4
4
4
5
6
6
7
12
15

Appendix A. Dioxin Monitoring Report

1. Introduction

The Bay of Plenty Regional Council (BOPRC) is overseeing the remediation of the Kopeopeo Canal to remove dioxin-contaminated sediment from the canal and undertake remediation at sites near the canal. The project's Resource Consent 67173 requires monitoring of ambient air for both dust and dioxins during the remediation project. BOPRC has commissioned a baseline monitoring study to assess the existing levels of dust and dioxin in air, so that any perceived change in levels of these air contaminants resulting from the project can be assessed. The baseline monitoring was undertaken at two sites near the canal from 27 March to 3 June 2015. This report presents the findings of the baseline monitoring.



2. Study Design

2.1 Monitoring site locations

Baseline monitoring sites were selected based on recommendations made in the Kopeopeo Canal Remediation Baseline Air Monitoring Plan (Jacobs, February 2015). Two sites were selected for dust monitoring. One site was located at the western end of the Project, south of Containment Site 1 (the "West" site). The second monitoring site was located near the Whakatane Growers property (the "East" site). Monitoring for dioxins was also underaken at this site. The two monitoring sites are indicated in Figure 1 below.

Figure 1 Kopeopeo Canal Remediation Project with locations of baseline ambient air monitoring sites

2.2 Sampling times and frequencies

Dust monitoring was undertaken by Airquality Ltd using a continuous optical particulate monitor (the Dustmote¹). The monitors measured Total Suspended Particulate matter (TSP), and telemetered the data in 1-minute averages to a server. Airquality Ltd performed regular instrument checks and at the end of the project provided the data as 1-minute raw data as well as 1-hour and 24-hour averages.

Dioxin monitoring was undertaken by Source Testing New Zealand (STNZ) using hi-vol PUF samplers in general accordance with USEPA Method TO-9A². Four 14-day samples were collected as per monitoring conditions in the remediation Project's resource consent.

Monitoring start and end dates for the two sites are provided in Table 1 below.

¹ http://airqualityItd.com/wp-content/uploads/2014/03/Airquality-DUSTMOTE_brochure.pdf

² http://www.epa.gov/ttnamti1/files/ambient/airtox/to-9arr.pdf

Table 1 Kopeopeo Canal baseline monitoring start and end dates

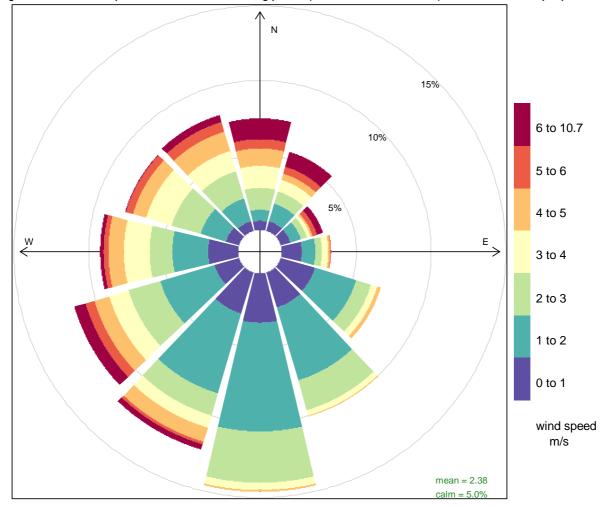
Monitoring Type		West site	East site
	Start	27 March, 13:00	8 April, 15:00
TSP monitoring	End	27 May, 14:00	3 June, 15:00
Dioxin monitoring	Start	n/a	31 March, 12:00
	End		26 May, 12:00

Meteorological monitoring is undertaken at a monitoring site established by BOPRC near Containment Site 1, at the western end of the Project. The site was established in November 2014, and records wind speed and direction, atmospheric temperature and pressure, relative humidity, and precipitation.

2.3 Assessment criteria

Assessment criteria for TSP and dioxins in relation to the Project have been established as per the resource consent for the remediation Project. Condition 40.4 of the consent states a limit of for dioxins of 0.03 pg I-TEQ/m³, measured as a 14-day average. Condition 43.1(b) states a trigger level for TSP of 70 μ g/m³ as a 1-hour average.

Any measurements above these trigger levels will require investigation into the causes of the exceedances, and if necessary additional mitigation measures to reduce the likelihood of exceedances in future.



3. Results

3.1 Meteorology

Wind speed and direction as measured at the Kopeopeo meteorological monitoring site are presented in the windrose in Figure 2 below. Winds measured during the baseline monitoring period were variable, with predominant winds being from the south and southwest. Strong winds (greater than 5 m/s) occurred 8.6% of the time and calm winds (less than 0.5 m/s) occurred 5.0% of the time. Average wind speed was 2.4 m/s.

Figure 2 Windrose for period of baseline monitoring period (27 March to 3 June 2015) as measured at Kopeopeo Canal

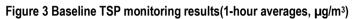
Frequency of counts by wind direction (%)

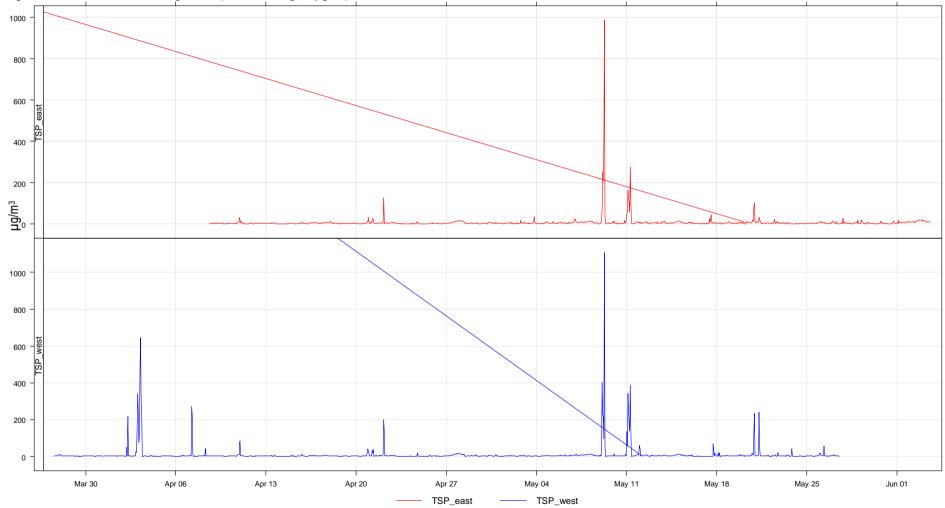
Atmospheric temperature, pressure, and relative humidity as measured at the site are presented in Table 2 below.

Statistic	Temperature (°C)	Relative humidity (%)	Pressure (hPa)
Minimum	0.4	40.2	987
Maximum	23.6	94.3	1033
Mean	13.7	79.5	1017
Median	14.5	83.5	1018

Table 2 Temperature, Relative Humidity and Atmospheric Pressure as Measured at Kopeopeo Canal

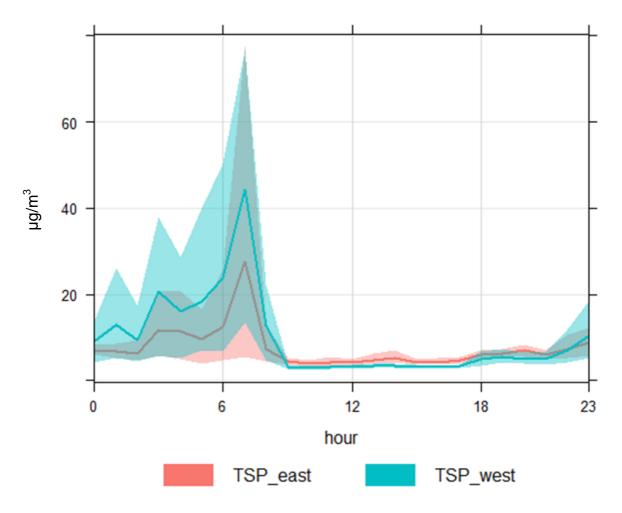
3.2 Particulate Matter


TSP monitoring results for the two sites are shown in Figure 3 below. Summary results are presented in Table 3.


Concentrations greater than the trigger level of 70 μ g/m³ occurred primarily during early morning hours, and all exceedances occurred between 10:00 pm and 8:00 am. Figure 4 provides a plot showing average TSP concentrations by hour of day over the monitoring period, and shows the trend for increasing particulate matter during night-time and early morning. Possible reasons for this are the accumulation of wood smoke from residential heating during cooler night-time and early morning periods.

Another explanation is that increases in relative humidity that occur with cooling temperatures could result in condensation as fog, which optical particulate monitors read as particulate matter. Analysis of the 1-hour averages observed during the baseline monitoring show that almost all of the exceedances occurred when the relative humidity was greater than 90%.

Baseline Ambient Air Monitoring Summary

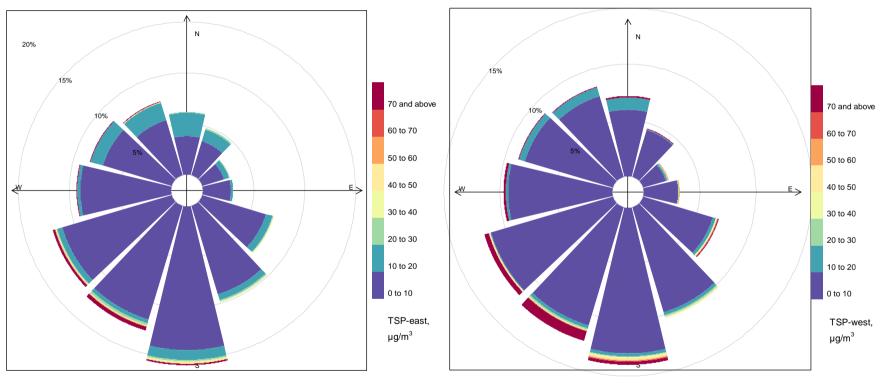


Statistic	TSP– West site (µg/m³)	TSP – East site (µg/m³)
Minimum	0	0
Maximum	1108	986
Mean	9.8	7.6
Median	3.1	4.0
95 th Percentile	14.0	15.3
Total number of exceedances	32	13
Total number of hours	1464	1345

Table 3 TSP Monitoring Results (1-hour averages)

Figure 4 Average TSP concentrations measured by hour of day (Mean and 95% confidence intervals per hour)

Baseline Ambient Air Monitoring Summary



In terms of assessing possible sources of particulate matter in relation to wind direction, a pollution rose may be used to illustrate the frequency of wind directions correlated with TSP concentrations. Figure 5 provides pollution roses for the east and west TSP monitoring sites, with the red segments representing exceedances of the 70 μ g/m³ trigger level. The pollution roses show that the majority of exceedances occur when the winds are from the south and southwest, with a small number of exceedances measured during periods of northerly winds, indicating that the exceedances are generally not related to the Project area, including the unsealed road to the north of the monitoring sites.

Baseline Ambient Air Monitoring Summary

Figure 5 Pollution roses for TSP monitoring at east (on left) and west (on right) sites. Red segments indicate exceedances of 70 µg/m³ trigger level.

Frequency of counts by wind direction (%)

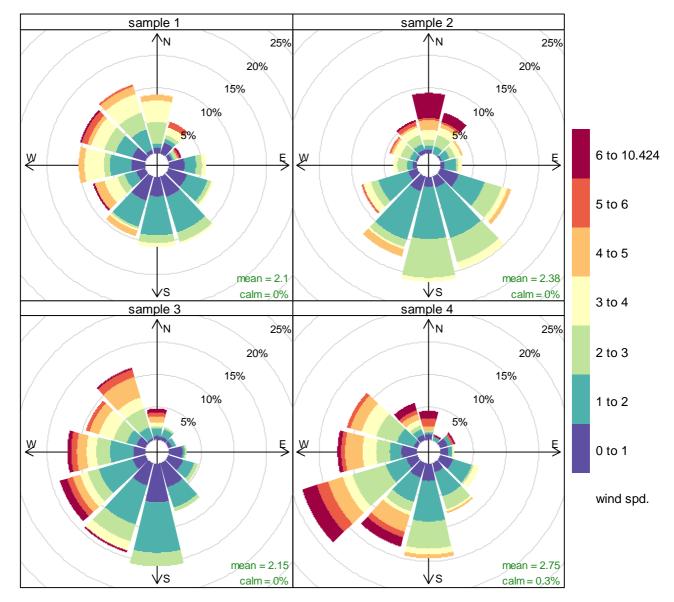
Frequency of counts by wind direction (%)

3.3 Dioxin Monitoring Results

Dioxin monitoring results are summarised in Table 4 below. A copy of the monitoring report from STNZ is provided as Appendix A. Four 14-day samples were collected during the baseline monitoring study. The sample results were relatively low, which is in agreement with concentrations seen in locations not impacted by industrial sources. The third sample, collected 28 April to 12 May, was significantly higher at 0.08 pg I-TEQ/m³. This exceeds the trigger level of pg I-TEQ/m³, although it is not inconsistent with measurements taken at other locations in New Zealand. Past measurements have indicated that dioxin concentrations (as 20-day averages) range from 0.001 to 0.01 pg I-TEQ/m³ in rural sites, whereas concentrations for urban sites ranged from 0.007 to 0.04 pg I-TEQ/m³, and up to 1.2 pg I-TEQ/m³ for an industrial site³.

Table 4 Dioxin monitoring results

	Sample 1	Sample 2	Sample 3	Sample 4
Start date/time	31/3/15 11:40	14/04/15 12:33	28/04/15 11:14	12/05/15 11:20
End date/time	14/04/15 10:55	28/04/15 11:10	12/05/15 11:15	26/05/15 11:10
Sample volume (Nm ³)	20,112	20,077	20,161	20,109
Total I-TEQ (Medium Bound ⁴), pg/m ³	0.004	0.018	0.082	0.011


Although the higher dioxin concentration measured in Sample 3 is within the normal range for a rural area, it is likely that the sample was impacted by local combustion source(s) such as domestic heating appliances or open burning at nearby rural properties. Figure 6 presents windroses representing the winds observed during each of the four dioxin sample periods, and gives an indication of areas upwind of the ambient air monitoring sites that would potentially contribute to the dioxin measurements. Each of the four two-week sample periods show variable winds, with a general predominance from westerly and southerly directions. The Kopeopeo Canal is located to the north of the monitoring site, and so dioxins measured from this activity would be observed during periods of northerly winds.

The winds during the period of Sample 3 were variable, with predominant winds form the south and west. Upwind activities in these directions are largely rural. Comparison with the particulate monitoring data show that during this period there were two occasions where high particulate concentrations were observed: on Saturday 9th of May (between 3:00am and 7:00am), and again on Monday 11th of May (between 1:00am and 8:00am). Winds during these hour were also entirely from the southwestern quadrant, ruling out discharges from Whakatane residential area to the east and southeast. Wind speeds during these events were light (less than 2 m/s), which would tend to rule out windblown dust as a source. It is therefore likely that that these spikes indicate a source of combustion (such as domestic or open burning to the south or west) that would influence the dioxin sample.

³ MfE, Organochlorines Programme, Ambient Concentrations of Selected Organochlorines in Air, December 1999.

⁴ The 'Medium Bound' concentration is derived by taking one-half the value of the level of detection

Figure 6 Windroses representing winds observed during each of the four dioxin sample periods

Frequency of counts by wind direction (%)

It should also be noted that the trigger level for dioxins is set at a low level, and exceedances of the trigger level do not necessarily indicate significant health risks. Table 5 provides a comparison of the Project trigger level for dioxins with ambient air guidelines, and indicates that the Project consent level is at the lower range of ambient air concentrations.

Table 5 Ambient air trigger level and guidelines for dioxins

Source	Averaging period	Evaluation Criterion (pg/m3)
Kopeopeo Canal Remediation Project – Consent Condition	14 days	0.03
Texas ESL⁵	Annual	0.03
California REL ⁶	Annual	40
Ontario Ambient Air Guidelines ⁷	24-hour	0.1

 ⁵ https://www.tceq.texas.gov/toxicology/esl
⁶ http://oehha.ca.gov/air/allrels.html
⁷ http://www.airqualityontario.com/downloads/AmbientAirQualityCriteria.pdf

4. Discussion and Conclusions

Baseline monitoring for particulate matter (TSP) was carried out at two locations near the Kopeopeo Canal between 27 March and 3 June 2015. Dioxin monitoring was also carried out at one of the sites from 31 March to 26 May. The monitoring is intended to give an indication of existing levels of these contaminants in the vicinity of the canal prior to the commencement of remediation activities.

Although the baseline monitoring data for the area is relatively limited in terms of duration, the results of the monitoring indicate that exceedances of the trigger levels for particulate matter and dioxins, as specified in the resource consent for the remediation Project, will be exceeded at times. It is our understanding that due to the sensitive nature of the Project, these trigger levels have been set at a relatively low level and do not necessarily represent serious risks to human health or the surrounding environment. Rather, they are designed to indicate the need for further investigation as to the causes of the exceedances. In particular, whether they are a result of Project activities that can subsequently be mitigated, or are a result of existing activities in the area and so may be considered part of the existing environment.

In regard to the particulate monitoring, the trigger level of 70 μ g/m³ as a 1-hour average was exceeded on several occasions (approximately 1-2% of the time for both monitors). These exceedances tended to occur during night-time or early morning periods, and are likely explained by increases in part by relative humidity and subsequent formation of fog, which is read by the optical instruments as particulate matter. It is also possible that domestic burning during cooler night-time periods contributed to the readings of particulate matter.

Four 14-day average dioxin samples were collected during the monitoring period. Three of the samples were below the trigger level for dioxins of 0.03 pg/m³ I-TEQ. One sample exceeded the trigger level, at 0.08 pg/m³. Analysis of the meteorology for the period of this exceedance indicates that the winds were predominantly from the west and south, which does not have any obvious combustion sources such as residential or industrial areas. However we note that this period also had high levels of particulate matter on two days, which could indicate a combustion source upwind of the area. It is possible that the 14-day sample could have been impacted by these events. We recommend that for future monitoring, any observation of combustion activities, especially open burning, be recorded so that they can be correlated with the monitoring results.

Given that the measured levels of dioxin are consistent with those measured in rural areas previously in New Zealand, and are below those measured in urban areas where the majority of the population reside, the levels of dioxin measured do not present a health risk above what is experienced by the majority of the population.

Appendix A. Dioxin Monitoring Report

Jacobs New Zealand Limited

BAY OF PLENTY REGIONAL COUNCIL

KOPEOPEO CANAL REMEMDIATION

BASELINE AMBIENT DIOXIN MONITORING, MARCH TO MAY 2015

Issue June 2015

Jacobs New Zealand Limited

BAY OF PLENTY RFEGIONAL COUNCIL

KOPEOPEO CANAL REMEDIATION

BASELINE AMBIENT DIOXIN MONITORING, MARCH TO MAY 2015

Issue

June 2015

Source Testing New Zealand Ltd PO Box 32 017 Maungaraki Lower Hutt 5010 Tel: 0275 533 210 Fax: 04 569 4446

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Source Testing New Zealand Limited's Client, and is subject to and issued in conjunction with the provision of the agreement between Source Testing New Zealand Limited and its client. Source Testing New Zealand Limited accepts no liability or reasonability for or in respect of any use of or reliance upon this report by any third party outside of the specific commission.

Document history and status

Revision	Date issued	Issued by	Reviewed by	Date reviewed	Revision type
Draft	27 June 2015	M. Tate	M. Newby	30 June 2015	Peer Review
Issue	30 June 2015	M. Newby			

Approved by

Name	Title	Signature
Matthew Newby	Air Quality Scientist	MM

Distribution of copies

Revision	Copy no	Quantity	Issued to
Issue	1	2	Jacobs New Zealand Limited Level 3, 86 Customhouse Quay PO Box 10-283 Wellington

Printed:	30 June 2015
Last saved:	30 June 2015 03:56 PM
File name:	D:\STNZ\Clients\Jacobs-SKM\BOPRC\Deliverables\Kopeopeo Canal Remediation Baseline Ambient Dioxin Monitoring 2015.doc
Author:	M. Newby
Name of organisation:	Jacobs New Zealand Ltd.
Name of project:	Bay of Plenty Regional Council Kopeopeo Canal Remediation
Name of document:	Baseline Ambient Dioxin Monitoring, March to May 2015
Document version:	Issue
Project number:	ST0490

This report may not be reproduced except in full without the permission of Source Testing New Zealand Ltd.

SOURCE TESTING NZ

Contents

1.	Intro	oduction	5
2.	Sam	pling Methodologies	6
3.	Sam	pling Locations	7
4.	Amb	pient Dioxin Monitoring Results	9
	4.1	Ambient Dioxin Monitoring Results	9
	4.2	Quality Control Data	11
Арр	endix	A Field Sheets, Chain of Custody & Calibrations	13
Арр	endix	B Laboratory Reports	30

1. Introduction

Source Testing New Zealand Limited (STNZ) was commissioned by Jacobs New Zealand Limited (Jacobs) on behalf of the Bay of Plenty Regional Council (BoPRC) to undertake Baseline Ambient Dioxin Monitoring as part of the Kopeopeo Canal Remediation. The Kopeopeo Canal is located to the west of Whakatane and is a critical component in the Rangitaiki Plains Draining Scheme. To maintain the canal, sediment is periodically removed and parts of the canal have been found to be contaminated with dioxins from historical storm water discharges from the Pinex Sawmill site.

BoPRC have obtained resource consent to remediate the contaminated portions of the canal. The Resource Consent stipulates air quality monitoring for both dust and dioxins for the duration of the project. In order to assess background dust and dioxin concentrations, Jacobs prepared the Baseline Air Monitoring Plan which detailed the ambient dust and dioxin monitoring programme to be completed prior to the commencement of the remediation.

Jacobs commissioned STNZ to undertake the ambient dioxin monitoring as detailed in the Baseline Air Monitoring Plan. Condition 40 of the resource consent relating to the ambient dioxin monitoring states:

40.2 Air quality monitoring for dioxins shall be undertaken in accordance with AS3580 at or adjacent to 99 Paroa Road, Whakatane(Whakatane Growers Limited) and 34 Paroa Road, Whakatane (Paroa School) and conducted in accordance with USEPA Method TO-9A 'Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air' except as modified for sampling over a 14-day period.

While the resource consent identifies two sites for ambient dioxin monitoring, for the baseline monitoring only the Whakatane Growers Ltd site was recommended based on the sensitivity of the receptor and the availability of power for the sampler.

STNZ provided the sampling equipment for the baseline ambient dioxin monitoring and provided training to BoPRC staff on the operation, calibration and sample handling in accordance with USEPA Method TO-9a. Matthew Newby, Air Quality Scientist conducted the training on 30 March 2015 and commissioned the sampling equipment on 31 March 2015. BoPRC representatives exchanged the sampling components every 14-days until the site was decommissioned on 25 May 2015. Samples were registered at the BoPRC laboratory and forwarded to AsureQuality, Gracefield for analysis. Copies of all field sheets, calibration records, laboratory chain of custody forms and analytical reports were forwarded to STNZ for review and reporting. The following report outlines the baseline ambient dioxin sampling methodology, describes the monitoring site and presents the results of the monitoring.

SOURCE TESTING NZ

2. Sampling Methodologies

The BoPRC Kopeopeo Canal Remediation baseline ambient dioxin monitoring was conducted in accordance with USEPA Method TO-9A Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air. STNZ are IANZ accredited for the sampling portion of this method and AsureQuality, Gracefield are IANZ accredited for the analysis.

STNZ employed an EcoTech HiVol 3000 PUF sampler for this work. The sampler consisted of a 100 mm quartz fibre filter holder which attaches directly to the PUF/XAD glass cartridge. The unit operated at a constant sampling rate of 12.5 m³/hr at actual conditions for a period of approximately 14 days. The sampler records a number of parameters including run time, sampling volume at actual conditions and standard sampling volume corrected to 0 °C, 101.3 kPa. The standardised sampling volume was used to calculate the ambient dioxin concentration.

USEPA Method TO- 9A specifies a 24 hour sampling period using a Poly Urethane Foam (PUF) cartridge. For the current project, the resource consent stipulated a 14-day sampling period. To prevent any potential loss of absorbed compounds due to the extended monitoring period, XAD resin was incorporated into the PUF cartridge. The sampling cartridges were spiked with isotopically labelled dioxin standards prior to sampling.

The HiVol PUF samples were exchanged by James Gladwin (Environmental Consultant with OPUS International Consultants) who was also responsible for calibrating the HiVol PUF samplers following the collection of each sample. James attended the training provided by Matthew Newby and was the key contact for the sampling portion of the project. James provided the collected samples to the BoPRC laboratory where samples were registered and forwarded to AsureQulaity, Gracefield for analysis. As the sampling method requires the samples to be extracted within 7-days of sample collections, the samples were to be forwarded to AsureQuality on the day of collection. Appendix A presents the field sheets, calibration records, and laboratory chain of custody forms collected as part of the monitoring programme.

Included in the monitoring programme was a field blank collected on 28 April 2015 and a laboratory blank was conducted with each round of analysis.

SOURCE TESTING NZ

3. Sampling Locations

The Kopeopeo Canal Baseline Baseline Air Monitoring Plan identified a single monitoring site for ambient dioxin monitoring located at Whakatane Growers Ltd, 99 Paroa Rd Whakatane. The specific location was determined in accordance with AS/NZS 3580.1.1:2007 Method for sampling and analysis of ambient air – Guide to siting air monitoring equipment. The baseline ambient dioxin monitoring site is depicted in Figure 1 and an aerial map depicting the sampling location is presented in Figure 2.

Figure 1: Baseline Monitoring Location

SOURCE TESTING NZ

Figure 2: Baseline Monitoring Location Aerial (data.linz.govt)

SOURCE TESTING NZ

4. Ambient Dioxin Monitoring Results

4.1 Ambient Dioxin Monitoring Results

The following section presents the results of the BoPRC Kopeopeo Canal Remediation baseline ambient dioxin monitoring performed at Whakatane Growers Ltd. Table 1 presents the results of the ambient dioxin monitoring for the period 30 March 2015 to 26 May 2015. The results for each of the congeners along with the International Toxic Equivalency factors (I-TEQ) and World Health Organisation Toxic Equivalency factors (WHO-TEQ) have been presented. Appendix B presents the analytical reports from AsureQuality, Gracefield.

The results of the ambient dioxin monitoring show the concentration at the baseline monitoring location ranged from 4.49 to 81.9 fg/m³ I-TEQ Upper Bound (corrected to 0 °C, 101.3kPa) with an average of 29.0 fg/m³ I-TEQ Upper Bound (corrected to 0 °C, 101.3kPa). The WHO-TEQ Upper Bound ranged from 4.77 to 99.9 fg/m³ (corrected to 0 °C, 101.3kPa) with an average of 33.3 fg/m³ WHO-TEQ Upper Bound (corrected to 0 °C, 101.3kPa). The highest concentration of 81.9 fg/m³ I-TEQ Upper Bound (corrected to 0 °C, 101.3kPa). The highest concentration of 81.9 fg/m³ I-TEQ Upper Bound (corrected to 0 °C, 101.3kPa) occurring over the sampling period 28 April to 12 May 2015. It is worth noting that this sample was extracted 17 days after sample collection and hence did not meet the method specification of 7 days.

SOURCE TESTING NZ

Table 1: Ambient Dioxin Monitoring Results, 31 March to 26 May 2015

Site	Baseline M	onitoring Lo	cation					
Start Date/Time	31/03/15 11:	40	14/04/15 1	12:33	28/04/15 1	1:14	12/05/15	1:20
End Date/Time	14/04/15 10:	55	28/04/15 1	11:10	12/05/15 1	1:15	26/05/15	11:10
Run Time (minutes)	20,112		20,077		20,161		20,109	
Corrected Vol (m3) ¹	3,944		3921		3,662		3,840	
Analyte	mass (pg)	Conc. (fg/m ³) ¹	mass (pg)	Conc. (fg/m ³) ¹	mass (pg)	Conc. (fg/m ³) ¹	mass (pg)	Conc. (fg/m ³) ¹
2378 TCDF	5.44	1.38	31.0	7.91	28.6	7.81	32.9	8.57
Total TCDF	174	44.1	924	236	878	240	759	198
2378 TCDD	<2.97	<0.753	3.80 ^E	0.969 ^E	47.8	13.1	<3.20	<0.833
Total TCDD	86.9	22.0	504 ^E	129 ^E	1,090	298	223	58.1
12378 PeCDF	5.45	1.38	28.6	7.29	21.4	5.84	16.4	4.27
23478 PeCDF	6.44	1.63	49.7	12.6	39.5	10.8	24.3	6.33
Total PeCDF	86.0	21.8	641	163	584	159	330	85.9
12378 PeCDD	<5.54	<1.40	14.1	3.60	159	43.4	11.5 ^E	2.99 ^E
Total PeCDD	44.8	11.4	354	90.3	2,060	563	126 ^E	32.8 ^E
123478 HxCDF	8.21 ^E	2.08 ^E	55.8	14.2	53.8	14.7	26.7	6.95
123678 HxCDF	6.08	1.54	51.9	13.2	41.9	11.4	18.4	4.79
234678 HxCDF	9.40	2.38	71.3	18.2	60.9	16.6	26.6	6.93
123789 HxCDF	<3.45	<0.875	<7.18	<1.83	<14.0	<3.82	<17.4	<4.53
Total HxCDF	64.0 ^E	16.2 ^E	474	121	688	188	181	47.1
123478 HxCDD	<4.30	<1.09	13.0 ^E	3.32 ^E	122	33.3	13.7 ^E	3.57 ^E
123678 HxCDD	9.41	2.39	26.4 ^E	6.73 ^E	324	88.5	24.1	6.28
123789 HxCDD	16.2	4.11	19.9	5.08	380	104	<19.9	<5.18
Total HxCDD	133	33.7	503 ^E	128 ^E	4,910	1,341	357 ^E	93.0 ^E
1234678 HpCDF	25.1	6.36	181	46.2	282	77.0	69.6	18.1
1234789 HpCDF	<4.36	<1.11	29.8	7.60	29.0	7.92	<23.8	<6.20
Total HpCDF	25.1	6.36	251	64.0	601	164	69.6	18.1
1234678 HpCDD	152	38.5	253	64.5	3,900	1,065	326	84.9
Total HpCDD	343	87.0	565	144	9,390	2,564	821	214
OCDF	14.0	3.55	81.5	20.8	270	73.7	34.0	8.85
OCDD	400	101	433	110	7,050	1,925	749	195
Total WHO -TEQ Lower Bound	9.46	2.40	65.4	16.7	365	99.7	37.7	9.82
Total WHO -TEQ Medium Bound	14.1	3.57	65.7	16.8	365	99.7	41.3	10.8
Total WHO -TEQ Upper Bound	18.8	4.77	66.1	16.9	366	99.9	44.9	11.7
Total I-TEQ Lower Bound	11.2	2.84	69.2	17.7	299	81.6	37.7	9.82
Total I -TEQ Medium Bound	14.4	3.65	69.6	17.8	299	81.6	41.3	10.8
Total I-TEQ Upper Bound	17.7	4.49	69.9	17.8	300	81.9	44.9	11.7

¹ Corrected to 0 °C, 101.3 kPa

E = Estimated result

SOURCE TESTING NZ

4.2 Quality Control Data

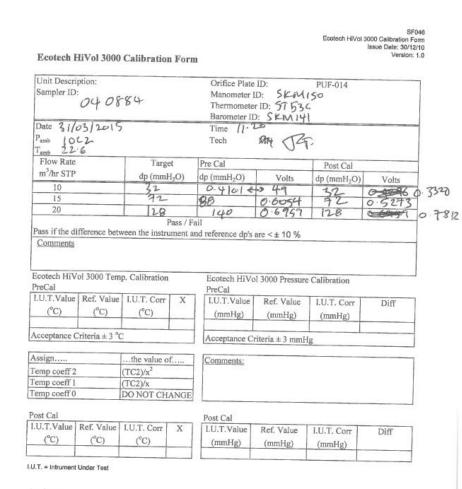
The follow section outlines the quality control samples analysed as part of the BoPRC Kopeopeo Canal Remediation baseline ambient dioxin monitoring. All field sheets and calibration sheets were reviewed and found to be in order. Table 2 presents the results of the field blank and laboratory blanks. The ambient dioxin concentrations have been calculated based on the average sample volume for the field blank and the sample volume of the sample analysed with the laboratory blank.

USEPA Method TO- 9A specifies that the samples must be extracted within 7-days of collection. However, the sample collected over the period 28 April to 12 May 2015 was not extracted by AsureQuality until 29 May 2015, 17 days after sample collection and hence does not fully comply with the method. Otherwise, all quality control criteria were within the specified ranges.

SOURCE TESTING NZ

Description	Field Blank		Lab Blank	1	Lab Blank	2	Lab Blank	3
Corrected Vol (m3) ¹	3,842		3944		3921		3,840	
Analyte	mass (pg)	Conc. (fg/m ³) ¹	mass (pg)	Conc. (fg/m ³) ¹	mass (pg)	Conc. (fg/m ³) ¹	mass (pg)	Conc. (fg/m ³) ¹
2378 TCDF	<2.20	<0.573	<2.43	<0.616	<2.23	<0.569	<4.30	<1.17
Total TCDF	<4.40	<1.15	<2.43	<0.616	<4.46	<1.14	<4.30	<1.17
2378 TCDD	<3.68	<0.958	<3.39	<0.859	<2.41	<0.615	<2.29	<0.625
Total TCDD	<3.68	<0.958	<3.39	<0.859	<4.81	<1.23	<4.58	<1.25
12378 PeCDF	<1.56	<0.406	<2.03	<0.515	<1.64	<0.418	<3.77	<1.03
23478 PeCDF	<1.64	<0.427	<2.02	<0.512	<1.84	<0.469	<3.80	<1.04
Total PeCDF	<1.64	<0.427	<2.03	<0.515	<1.84	<0.469	<3.80	<1.04
12378 PeCDD	<4.46	<1.16	<5.98	<1.52	<2.71	<0.691	<3.32	<0.91
Total PeCDD	<8.91	<2.32	<5.98	<1.52	<5.43	<1.38	<11.1	<3.03
123478 HxCDF	<4.10	<1.07	<2.10	<0.532	<4.86	<1.24	<4.74	<1.29
123678 HxCDF	<4.06	<1.06	<2.16	<0.548	<4.93	<1.26	<4.70	<1.28
234678 HxCDF	<4.86	<1.27	<2.35	<0.596	<5.40	<1.38	<5.21	<1.42
123789 HxCDF	<5.73	<1.49	<2.90	<0.735	<2.38	<0.607	<7.07	<1.93
Total HxCDF	<5.73	<1.49	<2.90	<0.735	<6.62	<1.69	<7.07	<1.93
123478 HxCDD	<5.99	<1.56	<4.31	<1.09	<5.36	<1.37	<5.65	<1.54
123678 HxCDD	<5.85	<1.52	<4.24	<1.07	<5.42	<1.38	<5.89	<1.61
123789 HxCDD	<6.06	<1.58	<4.36	<1.11	<5.42	<1.38	<5.71	<1.56
Total HxCDD	<6.06	<1.58	<4.36	<1.11	<5.42	<1.38	<5.89	<1.61
1234678 HpCDF	<5.15	<1.34	<3.05	<0.773	<2.51	<0.640	<4.45	<1.22
1234789 HpCDF	<7.04	<1.83	<4.25	<1.08	<3.39	<0.865	<6.68	<1.82
Total HpCDF	<7.04	<1.83	<4.25	<1.08	<3.39	<0.865	<6.68	<1.82
1234678 HpCDD	<5.64	<1.47	<4.92	<1.25	<5.15	<1.31	<7.19	<1.96
Total HpCDD	<5.64	<1.47	<4.92	<1.25	<5.15	<1.31	<7.19	<1.96
OCDF	<12.5	<3.25	<3.77	<0.956	<10.9	<2.78	<17.1	<4.67
OCDD	<4.05	<1.05	<2.67	<0.677	<8.88	<2.26	<13.3	<3.63
Total WHO -TEQ Lower Bound	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total WHO -TEQ Medium Bound	6.37	1.66	6.32	1.60	4.72	1.20	5.69	1.55
Total WHO -TEQ Upper Bound	12.7	3.31	12.6	3.19	9.44	2.41	11.4	3.11
Total I-TEQ Lower Bound	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total I -TEQ Medium Bound	5.44	1.42	5.05	1.28	4.25	1.08	5.29	1.44
Total I-TEQ Upper Bound	10.9	2.84	10.1	2.56	8.50	2.17	10.6	2.89

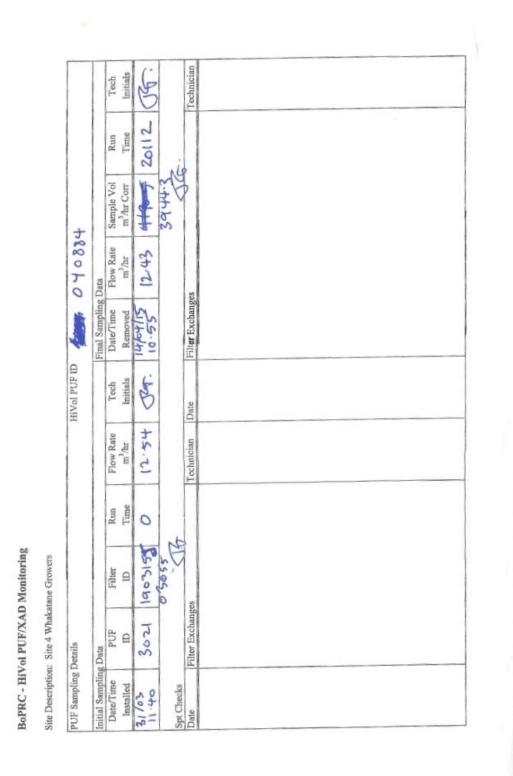
1. Corrected to 0 °C, 101.3 kPa


SOURCE TESTING NZ

Appendix A Field Sheets, Chain of Custody & Calibrations

This Appendix Contains 17 pages including the cover page.

SOURCE TESTING NZ


Sampling Period 31 March to 14 April 2015

Action:

If the instrument fails any of the calibration criteria a copy of the form must be forwarded by e-mail to the Project Manager

SOURCE TESTING NZ

SOURCE TESTING NZ

Com	pliance F	ield She	et		10618		
	ive	1910 0116		COLLECTION DATE:)4/54/15			
WEATHER: YESTERDAY	the second s		COLLECTED BY: TGT O				
WIND SPEED/DIRECTION	the second se			COST CENTRE: RR-	1 0102		
EBOP LAB ID NO.	15/2680	15/	15/	15/	15/		
Labstar Site No.					10		
Consent Number							
SAMPLE TYPE:							
Sample site location	0.1 11						
e.g name of dairy shed,	Siteq						
stream, industrial site, etc	Whalento	no	1				
	provers						
	parouvers						
Map Reference							
-							
Specific sampling site	1						
description e.g. 10m d/s		1	1				
of outfall							
NTOOTT							
NZDST Time - 24 Hour					-		
NZST Time - 24 hours							
SAMPLE COMMENTS	PUF 10:						
Colour Clark	1179104000 - 2005100-0	1					
Colour, Clarity etc.	30201	Nr.					
Any observations pertinent the samples							
o me samples	Filter 1D:	1					
	1903155	1					
f any field measurements	110155						
ire taken, record here	0 3655						
ne tanten, record here	2 3893				1		
		Sample	Containers				
Chemistry Bottle No's							
aken from this site							
lacto Bottle No's							
aken from this site	10						
ny other bottles							
nalysis Required							
different for each sample							
refer to reverse of sheet	Diaring						
all samples require the	Dioxins						
ime analysis							
hain of Custody Record.				COC Number			
ample/s relinquished By	Samp	le/s Received By		Date	Time		
VG				Let 1	12:30		
	Norma	3		14/04/2015			
	Name						
ame	Name						
		1					
ame	Name				1		
ease print name under sign	ature if more	e than three samp	le transfers use se	aparate COC form			

SOURCE TESTING NZ

	Bay of Plenty Regional Counc SD074 / Sample Submission for E	il Laboratory xternal Analysis
To: Asure Q		
Analysis Request No:	2015/062 .	Date: 14-04-15
Submitters Signature:	of illiendary_	EBOP Order No: 72988
BOPRC Sample ID	Analysis Requested	Comments
5-2680	Dioxins	(No of samples/type/Quote)

SAMPLE RECEIPT ADVICE

Fick Box to indicate request to sub-contractor	Yes	DI-
High Priority Samples		No
Return Field sheet		~
Acturn samples after analysis		

SUB-CONTRACTING LAB

All samples received in goo	d order and with appropriate documentation	
Please quote security s	seal number and condition (where applicable)	:
	Laboratory Job Number	;
	Results back to Laboratory Team Leade	r adrian.spence@boprc.govt.n
Comments:		
	6 8	
Name:	Date:	
Signature:		

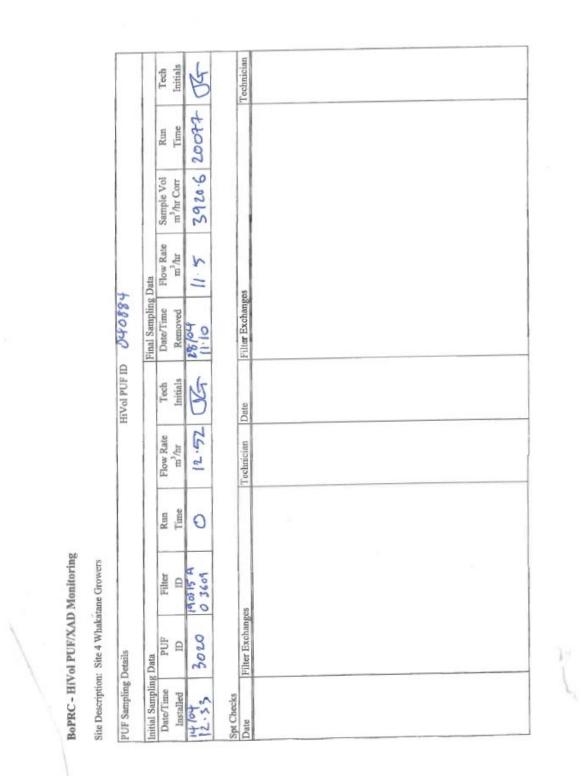
SOURCE TESTING NZ

Sampling Period 14 to 28 April 2015

Unit Descrip Sampler ID:		18001L		Orifice Plate Manometer I	D: SEMI	PUF-014		
	010	P 00		Thermometer Barometer ID	1D: 13-00	12		
Date 197	4/5			Time 11-2		anne		
Pamb 1000 Tamb 13-8				Tech	MAR OF			
Flow Rate		Target		Pre Cal		Post Cal		
m ³ /hr STP		dp (mmH	0)	dp (mmH ₂ O)	Volts	dp (mmH ₂ O)	Volts	
10		32		0.6	0-2148	32	0.3906	
15		73		81	0.6836	73	0.6250	
20		29	-	136	0.9375	129	0-8984	
	ol 3000 Tem	p. Calibration			1 3000 Pressure	Calibration		
PreCal	D C M I	Lun a L		PreCal				
I.U.T.Value (°C)	Ref. Value (°C)	I.U.T. Corr (°C)	x	I.U.T.Value (mmHg)	Ref. Value (mmHg)	I.U.T. Corr (mmHg)	Diff	
Acceptance C	Criteria ± 3 °C	2		Acceptance Criteria ± 3 mmHg				
Assign		the value of		Comments:				
Temp coeff 2		(TC2)/x ²						
Temp coeff 1		(TC2)/x						

Poet Cal

I.U.T. Value	Ref. Value	I.U.T. Corr	Х
(°C)	(°C)	(°C)	


I.U.T.Value	Ref. Value	I.U.T. Corr	Diff
(mmHg)	(mmHg)	(mmHg)	

I.U.T. = Intrument Under Test

Action:

If the instrument fails any of the calibration criteria a copy of the form must be forwarded by e-mail to the Project Manager

SOURCE TESTING NZ

SOURCE TESTING NZ

Bay of P	lenty Regi		ncil	FIELD	SHEET NO.	15/ 1699
	Field Sh			COLLECTION DATE: 28/04/15		
WEATHER: TODAY P	ine to show	ieus		COLLECTED BY: JE OPUS		
WEATHER: YESTERDAY					CENTRE:	
WIND SPEED/DIRECTIO				PROJECT CODE:		
EBOP LAB ID NO.	15/2983	15/2984	15/		15/	15/
Labstar Site No.						
Consent Number						
SAMPLE TYPE:	Air					
Lake/River/Location Description	Whatcatare	-D				
Map Reference	Growers					
Site Description						
NZST Time - 24 Hour						
SAMPLE COMMENTS	PUF 10 3020 Filty ID	PUFID SOLL OF	5			
Colour, Clarity etc.	190315A	1903154				
BOD Bottle No	1					
Chemistry Bottle No.						
Bacto Bottle No.						
Other Bottle No.						
	FIEI	D MEASUREMENT	S (express a	li units)		
Temperature ('C)			[
Dissolved Oxygen (g/m3	3)					
Conductivity - 3 (ms/c						
Conductivity (When I (us/o	and the second se					
Only enter Conductivity-3		m to ms/cm + by 1000)			
oH	1					
Salinity (0/00))					
Staff Gauge (M)						
	Temp	DO	Cond/	Salo	VLEC	-
Meter Type	(any				1	
Meter No.						
ANALYSES REQUIRED:						
	Dioxins	Dioxins.				
Black Disc (M) and Water Colour (Hue)						

FILL IN ALL SHADED AREAS

SOURCE TESTING NZ

Bay of Plenty Regional Council Laboratory SD074 / Sample Submission for External Analysis

To: Asure Quality

Analysis Request No: 2015 / 074	Date: 28-04-15
Submitters Signature: R. R. R. R.	EBOP Order No: 75175

BOPRC Sample ID	Analysis Requested	Comments (No of samples/type/Quote)
5)2983,2984	Dioxins - Brendon	Filters x 2

SAMPLE RECEIPT ADVICE

Tick Box to indicate request to sub-contractor	Yes	No
High Priority Samples		/
Return Field sheet		~
Return samples after analysis		

SUB-CONTRACTING LAB

All samples received in good	order and with appropriate documentation:	
Please quote security se	al number and condition (where applicable):	
	Laboratory Job Number:	
	Results back to Laboratory Team Leader	adrian.spence@boprc.govt.nz
Comments:		
Name:	Date:	

ISSUE No: 1

ISSUE DATE: 26/06/13

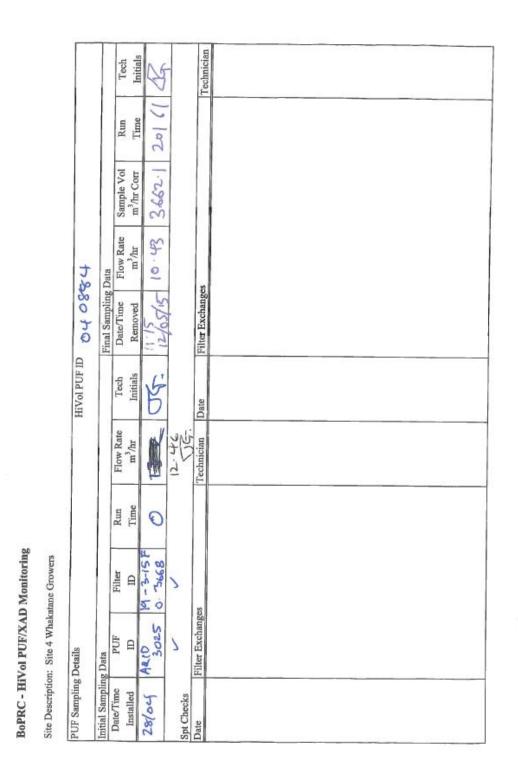
Page 1 of 1

SOURCE TESTING NZ

Sampling Period 28/04/15 to 12/05/15

Ecotech H	liVol 3000	Calibration	Form			Ecotech HIVel	SF0 3000 Calibration Fo Issue Date: 30/12/ Version: 1
Unit Descrip				Orifice Plate 1	C Con H	PUF-014	
Sampler ID:	Sampler ID: 04 - 4884			Manometer II	ID: 13-00	120	
4	- 1			Barometer ID	Metse	vice	
Date 28/04/2015 Pamb 1003			Time 10 50 Tech MR JG.				
Tamb 21- Flow Rate	1	Target		Pre Cal		Post Cal	
m ³ /hr STP		dp (mmH		dp (mmH ₂ O)	Volts	dp (mmH ₂ O)	Volts C
10		72		38	0.4296		0-39060
		72		77	0.6054	72	0.505
15			20 127			I TO PART	A 0
20 Pass if the di	fference betw	129 (P	aso/ Fa ment an	139 il d reference dp's a	0 8594 are < ± 10 %	107	0.8007
20 Pass if the di <u>Comments</u> Ecotech HiV		129 (P	2	d reference dp's a Ecotech HiVo		Calibration	0.8 cc+
20 Pass if the di Comments	ol 3000 Temj	Preen the instru	2	d reference dp's a	are < ± 10 %	Calibration	Diff
20 Pass if the di <u>Comments</u> Ecotech HiV PreCal	ol 3000 Temj	Preen the instru	ment an	d reference dp's a Ecotech HiVo PreCal I.U.T.Value	are < ± 10 % I 3000 Pressure Ref. Value	I.U.T. Corr	
20 Pass if the di <u>Comments</u> Ecotech HiV PreCal I.U.T.Value	ol 3000 Temj Ref. Value	p. Calibration	ment an	d reference dp's a Ecotech HiVo PreCal	re < ± 10 %		
20 Pass if the di <u>Comments</u> Ecotech HiV PreCal I.U.T.Value (°C)	ol 3000 Temj Ref. Value	p. Calibration	ment an	d reference dp's a Ecotech HiVo PreCal I.U.T.Value (mmHg)	are < ± 10 % I 3000 Pressure Ref. Value	I.U.T. Corr (mmHg)	
20 Pass if the di <u>Comments</u> Ecotech HiV PreCal I.U.T.Value (°C)	ol 3000 Temj Ref. Value (°C)	p. Calibration	X	d reference dp's a Ecotech HiVo PreCal I.U.T.Value (mmHg)	are < ± 10 % I 3000 Pressure Ref. Value (mmHg)	I.U.T. Corr (mmHg)	
20 Pass if the di <u>Comments</u> Ecotech HiV PreCal I.U.T.Value (°C) Acceptance (ol 3000 Temj Ref. Value (°C) Criteria ± 3 °C	p. Calibration I.U.T. Corr (°C)	X	d reference dp's a Ecotech HiVo PreCal I.U.T.Value (mmHg) Acceptance Cr	are < ± 10 % I 3000 Pressure Ref. Value (mmHg)	I.U.T. Corr (mmHg)	
20 Pass if the di <u>Comments</u> Ecotech HiV PreCal I.U.T.Value (°C) Acceptance (Assign	ol 3000 Temj Ref. Value (°C) Criteria ± 3 °C	p. Calibration I.U.T. Corr (°C)	X	d reference dp's a Ecotech HiVo PreCal I.U.T.Value (mmHg) Acceptance Cr	are < ± 10 % I 3000 Pressure Ref. Value (mmHg)	I.U.T. Corr (mmHg)	

I.U.T.Value	Ref. Value	I.U.T. Corr	Х
(°C)	(°C)	(°C)	
0-12-12			


I.U.T.Value	Ref. Value	I.U.T. Corr	Diff
(mmHg)	(mmHg)	(mmHg)	

I.U.T. = Intrument Under Test

Action:

If the instrument fails any of the calibration criteria a copy of the form must be forwarded by e-mail to the Project Manager

SOURCE TESTING NZ

SOURCE TESTING NZ

Bay of P	lenty Regi		ouncil	FIELD SHEET NO.	5 15/ 1750
	Field She	90î		COLLECTION DATE	
WEATHER: TODAY	Rain			COLLECTED BY:	SG. OPIUS
WEATHER: YESTERDAY	tine.	-	,	COST CENTRE:	ret arno
WIND SPEED/DIRECTIO		15.19/	06/15.	PROJECT CODE:	
EBOP LAB ID NO.	15/234	15/	15/	15/	15/
Labstar Site No.					
Consent Number					
SAMPLE TYPE:					
and the second sec	site 4 Whakatana Growers				
Lake/River/Location	naulastan				
Description	Whenkeyon				
	Growers				
Map Reference					
Site Description	Aivsomple				
NZST Time - 24 Hour					
	Det la 2 al		_		
SAMPLE COMMENTS	PUT 15 302	7			
GOMPLE COMMENTS	T.U. ID				
	FilterID				
Colour, Clarity etc.	19-3-15F				
BOD Bottle No					
Chemistry Bottle No.					
Bacto Bottie No.					
Other Bottle No.					
and the second se	FIELD	MEASUREME	NTS (express all	units)	
Temperature ('C)					
Dissolved Oxygen (g/m3))				
Conductivity - 3 (ms/cr	All and a second se				
Conductivity (When I (us/cm	and the second se				
Only enter Conductivity-3 m		to ms/cm + by 1	000		
)H			1		
Salinity (0/00)					
Staff Gauge (M)					
	Temp	DO	Cond/S	aln VLEC	
Aeter Type			0.0110	100	
Aeter No.					
NALYSES REQUIRED:	Dioxins				
ack Disc (M) and /ater Colour (Hue)					

FILL IN ALL SHADED AREAS

SOURCE TESTING NZ

Analysis Request No: 5	2015/102-		Date: 26-05	-15
Submitters Signature:	of Muneluy .		EBOP Order No:	
	young.			42488
BOPRC Sample ID	Analysis Requeste	d		ments
15-3176	Droxins		(No of sample	es/type/Quote
3467			Kitters	
0407			11	
	1			
			1.5	
lick Box to indicate requ High Priority Samples	est to sub-contractor		Yes	No
Return Field sheet			~	
Return samples after a	analysis			-
ne tern sumpres arter a	anaiyais			
	SUB-CONTRACT	ING LAB		
All samples received	I in good order and with appropriate of			
the second s				
Fiease quote se	curity seal number and condition (wh	ere applicable):		
	Laborato	ry Job Number:		
	Results back to Laborato	ry Team Leader	adrian.spence@b	ionre govt na
				opie:Boit:ur
o monthe states				
Comments:				
omments:				
omments:				
omments:	Dai			

SOURCE TESTING NZ

Sampling Period 12 to 26 May 2015

		SF046
Cotech	HiVol.	3000 Calibration Form
		Issue Date: 30/12/10
		Version: 1.0

Ecotech HiVol 3000 Calibration Form

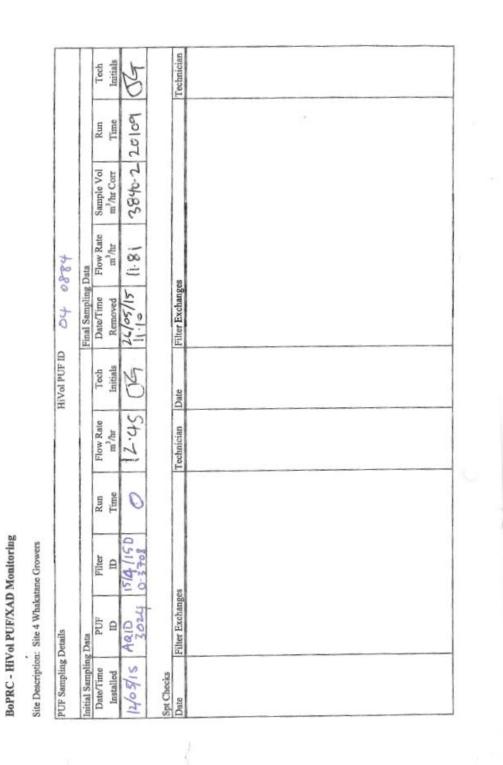
Unit Descript	Jnit Description:				Orifice Plate ID: PUF-014					
Sampler ID:				Manometer ID: SKM 150						
	04-4	884		Thermometer ID: 13-0012						
	(Training)		_	Barometer ID	: Metser	vice				
Date 12/6	5			Time	1.30					
Pumb 1001				Tech	19+ T-					
Tamb 7-5	5				05					
Flow Rate		Target		Pre Cal		Post Cal				
m3/hr STP		dp (mmH ₂	0)	dp (mmH ₂ O)	Volts	dp (mmH2O)	Volts			
10		32		42:5	0.4796	037114	032			
15		72		75	0.0054	0.5859				
20		12-7		123	0.8203	0.8339	127			
Pass if the di	Perence hetw	1.5.5	iss) Fa	il d reference dp's	are < ± 10 %					
Comments	ference bern	cent de moten		a trans of the						
Comments										
Ecotech HiV	ol 3000 Tem	p. Calibration	_	Ecotech HiVo	al 3000 Pressure	Calibration				
PreCal				PreCal						
1.U.T.Value	Ref. Value	I.U.T. Corr	X	I.U.T.Value	Ref. Value	I.U.T. Corr	Diff			
(°C)	(°C)	(°C)		(mmHg)	(mmHg)	(mmHg)				
(0)	(0)		-	((-6/				
Acceptance (riteria + 3 °C	1	_	Acceptance C	riteria ± 3 mmH	le l				
riseptance (1110110-0-0			r neephartee c		2				

Assign	the value of		
Temp coeff 2	(TC2)/x ²		
Temp coeff 1	(TC2)/x		
Temp coeff 0	DO NOT CHANGE		

Comments:	

Post Cal

orr	X
	-+


I.U.T.Value	Ref. Value	LU.T. Corr	Diff
(mmHg)	(mmHg)	(mmHg)	

I.U.T. = Intrument Under Test

Action:

If the instrument fails any of the calibration criteria a copy of the form must be forwarded by e-mail to the Project Manager

SOURCE TESTING NZ

SOURCE TESTING NZ

Day OF	Plenty Reg		ouncil	FIELD SHEET NO.	15/ 83
	Field Sh	eet		COLLECTION DAT	E 26/05/15 ofus JS.
	cue-cust			COLLECTED BY:	offic TE
WEATHER: YESTERDA		5 Show	ers	COST CENTRE:	10 - J - J - J - J - J - J - J - J - J -
WIND SPEED/DIRECTIO				PROJECT CODE:	
EBOP LAB ID NO.	15/3467	15/	15/	15/	15/
Labstar Site No.					
Consent Number					
SAMPLE TYPE:	AIR.				
Lake/River/Location Description	Air Sample				
Map Reference	Siteq		-		
Site Description	Sample Site 4 Whalcatus Growers	æ			
NZST Time - 24 Hour					
SAMPLE COMMENT'S	PUFID: ARID 3024				
Colour, Clarity etc.	Filter 1D: 15/4/150				
OD Bottle No					
chemistry Bottle No.					
acto Bottle No.					
ther Bottle No.					
	FIELD	MEASUREMEN	ITS (express all i	units)	
emperature ('C)					
issolved Oxygen (g/m3	k				
onductivity - 3 (ms/cr					
onductivity (When I (us/cn	n)				
nly enter Conductivity-3 m	ns/cm, to convert us/cm	to ms/cm + by 10	00		
Η					
alinity (0/00)					
taff Gauge (M)					
	Temp	· DO	Cond/Sa	In VLEC	
eter Type				TLU	
eter No.					
NALYSES REQUIRED:	D				
	Dickins				
ack Disc (M) and ater Colour (Hue)					

FILL IN ALL SHADED AREAS

SOURCE TESTING NZ

Analysis Request No: 5	2015/102-		Date: 26-05	-15
Submitters Signature:	of Muneluy .		EBOP Order No:	
	young.			42488
BOPRC Sample ID	Analysis Requeste	d		ments
15-3176	Droxins		(No of sample	es/type/Quote
3467			Kitters	
0407			11	
	1			
lick Box to indicate requ High Priority Samples	est to sub-contractor		Yes	No
Return Field sheet			~	
Return samples after a	analysis			-
ne tern sumpres arter a	anaiyais			
	SUB-CONTRACT	ING LAB		
All samples received	I in good order and with appropriate of			
the second s				
Fiease quote se	curity seal number and condition (wh	ere applicable):		
	Laborato	ry Job Number:		
	Results back to Laborato	ry Team Leader	adrian.spence@b	ionre govt na
				opie:Boit:ur
o monthe states				
Comments:				
omments:				
omments:				
omments:	Dai			

SOURCE TESTING NZ

Appendix B Laboratory Reports

This Appendix contains 18 pages including cover.

SOURCE TESTING NZ

Dioxin Laboratory Result for Period 31 March to 14 April 2015

AsureQuality Limited | 10 Quadrant Drive | Walwhetu | Lower Hutt 5010 | Weilington | New Zealand PO Box 31242 | Lower Hutt 5040 | Weilington | New Zealand L +64 4 570 8800 | e. cavelington@surequality.com | w. www.asurequality.com Global cayerbir in food andity and quality

Certificate of Analysis

Submission Reference: 2015/062

Amended Report

Paul Futter Bay of Plenty Regional Council PO Box 364 Whakatane 3158 New Zealand

PO Number: 72988

Report Issued: 26-Jun-2015

Extraction Date: 15 April 2016 Analysed Date: 19 April 2015 AsureQuality Reference: 15-37889

Sample(s) Received: 15-Apr-2015 06:00

tests were performed on the samples as received	L		
stomer Sample Name: 15-2680 (Air) Lab ID:	15-37889-1		
mple Condition: Acceptable			
lest	Result	Unit	Method Reference
Polychlorinated Diberzo-p-dioxins and Polychlorin	ated Dibenzofurans (PCDD/Fs)		
2378-TCDF	6.44	Pg	USEPA Method TO-9A (GC-HRMS)
Total TCDF	174	Pg	USEPA Method TO-9A (GC-HRMS)
2378-TCDD	<2.97	Pg	USEPA Method TO-9A (GC-HRMS)
Total TCDD	86.9	Pg	USEPA Method TO-9A (GC-HRMS)
12378-PeCDF	5.45	Pg	USEPA Method TO-9A (GC-HRMS)
23478-PeCDF	6.44	Pg	USEPA Method TO-9A (GC-HRMS)
Total PeCDF	86.0	Pg	USEPA Method TO-9A (GC-HRMS)
12378-PeCDD	<6.54	Pg	USEPA Method TO-9A (GC-HRMS)
Total PeCDD	44.8	Pg	USEPA Method TO-9A (GC-HRMS)
123478-HxCDF	8.21 (E)	Pg	USEPA Method TO-9A (GC-HRMS)
123678-HxCDF	6.08	Pg	USEPA Method TO-9A (GC-HRMS)
234678-HxCDF	9.40	Pg	USEPA Method TO-9A (GC-HRMS)
123789-HxCDF	<3.54	Pg	USEPA Method TO-9A (GC-HRMS)
Total HxCDF	64.0 (E)	Pg	USEPA Method TO-9A (GC-HRMS)
23478-HxCDD	<4.30	Pg	USEPA Method TO-9A (GC-HRMS)
23678-HxCDD	9.41	Pg	USEPA Method TO-9A (GC-HRMS
23789-HxCDD	16.2	Pg	USEPA Method TO-9A (GC-HRMS
Total HxCDD	133	Pg	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDF	25.1	Pg	USEPA Method TO-9A (GC-HRMS)
1234789-HpCDF	<4.36	Pg	USEPA Method TO-9A (GC-HRMS)
Total HpCDF	25.1	Pg	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDD	162	Pg	USEPA Method TO-9A (GC-HRMS)
Total HpCDD	343	Pg	USEPA Method TO-9A (GC-HRMS)
OCDF	14.0	Pg	USEPA Method TO-9A (GC-HRMS)
OCDD	400	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Lowerbound	1370	P9	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Mediumbound	1370	Pg	USEPA Method TO-9A (GC-HRMS)

AsureQuality has used resonable will, care, and effort to provide an accurate analysis of the sample(s) which form(s) the subject of this report. However, the accuracy of this analysis is related on, and subject to, the sample(s) provided by you and your responsibility as to transportation of the sample(s). AsureQuality's alandard terms of business apply to the analysis set out in this report.

Report Number: 127800 This report must not be reproduced except in full, without the prior written approval of the laboratory. Page 1 of 5 Report Number 127800 cancels Report Number 104138.

SOURCE TESTING NZ

AsureQuality Reference: 15-37889

Report Issued: 25-Jun-2015

Test	Result	Unit	Method Reference
Sum of PCDD/Fs - Upperbound	1370	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Lowerbound	9.46	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Mediumbound	14.1	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Upperbound	18.8	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Lowerbound	11.2	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Mediumbound	14.4	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Upperbound	17.7	Pg	USEPA Method TO-9A (GC-HRMS)
Surrogate Standards			
"Cl+ 2378-TCDD	94	96	USEPA Method TO-9A (GC-HRMS)
Internal Standards			
*C+= 2378-TCDF	103	96	USEPA Method TO-9A (GC-HRMS)
*C+= 2378-TCDD	96	%	USEPA Method TO-9A (GC-HRMS)
*C a 12378-PeCDF	102	%	USEPA Method TO-9A (GC-HRMS)
*C+2 23478-PeCDF	102	%	USEPA Method TO-9A (GC-HRMS)
*C+2 12378-PeCDD	118	%	USEPA Method TO-9A (GC-HRMS)
*Cra 123478-HxCDF	86	%	USEPA Method TO-9A (GC-HRMS)
*C+2 123678-HxCDF	76	%	USEPA Method TO-9A (GC-HRMS)
*C.a 234678-HxCDF	82	%	USEPA Method TO-9A (GC-HRMS)
°Ca 123789-HxCDF	88	%	USEPA Method TO-9A (GC-HRMS)
PC # 123478-HxCDD	102	%	USEPA Method TO-9A (GC-HRMS)
PC = 123678-HxCDD	80	%	USEPA Method TO-9A (GC-HRMS)
PC a 1234678-HpCDF	92	%	USEPA Method TO-9A (GC-HRMS)
*C a 1234789-HpCDF	95	%	USEPA Method TO-9A (GC-HRMS)
°C.a 1234678-HpCDD	110	%	USEPA Method TO-9A (GC-HRMS)
°C⊲ OCDD	78	%	USEPA Method TO-9A (GC-HRMS)

E = Estimated result

QC Results

Blank

Relates to sample(s) 15-37889-1			
Test	Result	Unit	Method Reference
Polfchlorinated Dibenzo-p-dioxins and Polfchlorinated D	ibenzofurans (PCDD/Fs)		
2378-TCDF	<2.43	Pg	USEPA Method TO-9A (GC-HRMS)
Total TCDF	<2.43	P9	USEPA Method TO-9A (GC-HRMS)
2378-TCDD	<3.39	P9	USEPA Method TO-9A (GC-HRMS)
Total TCDD	<3.39	P9	USEPA Method TO-9A (GC-HRMS)
12378-PeCDF	<2.03	P9	USEPA Method TO-9A (GC-HRMS)
23478-PeCDF	<2.02	P9	USEPA Method TO-9A (GC-HRMS)
Total PeCDF	<2.03	P9	USEPA Method TO-9A (GC-HRMS)
12378-PeCDD	<5.98	P9	USEPA Method TO-9A (GC-HRMS)
Total PeCDD	<5.98	P9	USEPA Method TO-9A (GC-HRMS)
123478-HxCDF	<2.10	P9	USEPA Method TO-9A (GC-HRMS)
123678-HxCDF	<2.16	P9	USEPA Method TO-9A (GC-HRMS)
234678-HxCDF	<2.36	P9	USEPA Method TO-9A (GC-HRMS)
123789-HxCDF	<2.90	P9	USEPA Method TO-9A (GC-HRMS)
Total HxCDF	<2.90	P9	USEPA Method TO-9A (GC-HRMS)
123478-HxCDD	<4.31	P9	USEPA Method TO-9A (GC-HRMS)
123678-HxCDD	<4.24	P9	USEPA Method TO-9A (GC-HRMS)
123789-HxCDD	<4.36	Pg	USEPA Method TO-9A (GC-HRMS)

Report Number: 127800 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127800 cancels Report Number 104138.

Page 2 of 5

SOURCE TESTING NZ

AsureQuality Reference: 15-37889

Report Issued: 26-Jun-2015

Test	Result	Unit	Method Reference
Total HxCDD	<4.36	Pg	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDF	<3.06	Pg	USEPA Method TO-9A (GC-HRMS)
1234789-HpCDF	<4.25	Pg	USEPA Method TO-9A (GC-HRMS)
Total HpCDF	<4.25	Pg	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDD	~4.92	Pg	USEPA Method TO-9A (GC-HRMS)
Total HpCDD	<4.92	Pg	USEPA Method TO-9A (GC-HRMS)
OCDF	<3.77	pg	USEPA Method TO-9A (GC-HRMS)
OCDD	<2.67	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Mediumbound	18.4	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Upperbound	36.7	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Lowerbound	0.000	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Mediumbound	6.32	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Upperbound	12.6	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Lowerbound	0.000	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Mediumbound	6.05	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Upperbound	10.1	P9	USEPA Method TO-9A (GC-HRMS)
Surrogate Standards		2022	
'CI+ 2378-TCDD	100	%	USEPA Method TO-9A (GC-HRMS)
nternal Standards			
*C+: 2378-TCDF	92	%	USEPA Method TO-9A (GC-HRMS)
*C+: 2378-TCDD	92	%	USEPA Method TO-9A (GC-HRMS)
*C.: 12378-PeCDF	108	%	USEPA Method TO-9A (GC-HRMS)
*C+: 23478-PeCDF	105	%	USEPA Method TO-9A (GC-HRMS)
*C.: 12378-PeCDD	122 (R)	%	USEPA Method TO-9A (GC-HRMS)
*C+= 123478-HxCDF	88	%	USEPA Method TO-9A (GC-HRMS)
°C.: 123678-HxCDF	75	%	USEPA Method TO-9A (GC-HRMS)
°C.: 234678-HxCDF	82	%	USEPA Method TO-9A (GC-HRMS)
°Ce 123789-HxCDF	90	%	USEPA Method TO-9A (GC-HRMS)
*Ce: 123478-HxCDD	100	%	USEPA Method TO-9A (GC-HRMS)
°C₁= 123678-HxCDD	85	%	USEPA Method TO-9A (GC-HRMS)
ªC. 1234678-HpCDF	92	%	USEPA Method TO-9A (GC-HRMS)
°C ₁₂ 1234789-HpCDF	92	%	USEPA Method TO-9A (GC-HRMS)
ªCt 1234678-HpCDD	105	%	USEPA Method TO-9A (GC-HRMS)
°C. OCDD	80	%	USEPA Method TO-9A (GC-HRMS)

R = Recover outside method limits

Analysis Summary

Wellington Laboratory				
Analysis	Method	Accreditation	Authorised by	
Polychlorinated Dibenzo-p-dioxir	ns and Polychlorinated Dibenzofurans (PCDD/Fs)			
DX-DIOX03, 01-DEFAULT	USEPA Method TO-9A (GC-HRMS)	IANZ	Phil Bridgen	

Lowerbound concept uses zero for the contribution of each non-quantified analyte. Mediumbound concept uses half of the reporting limit for the contribution of each non-quantified analyte.

Results that are prefixed with '<' indicate the lowest level at which the analyte can be reported, and that in this case the analyte was not observed above this limit.

Report Number: 127800 This report must not be reproduced except in full, without the prior written approval of the laboratory. Page 3 of 5 Report Number 127800 cancels Report Number 104138.

SOURCE TESTING NZ

AsureQuality Reference: 15-37889

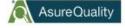
Report Issued: 26-Jun-2015

Phil Bridgen Senior Scientist

Accreditation

Wellington Laboratory

Report Number: 127800 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127800 cancels Report Number 104138. Page 4 of 5


SOURCE TESTING NZ

AsureQuality Reference: 15-	37889	Report issued: 25-Jun
Appendix Analyte Summary		
Analyte Definitions (Environm	nental Tests)	
Polfchlorinated Dibenzo-p-dioxi	ns and Pol∮chlorinated Dibenzofurans (PCDD/Fs)	USEPA Method TO-9A (GC-HRMS)
Anal∮te	Full Name	
2378-TCDF	2,3,7,8-Tetrachlorodibenzofuran	
Total TCDF	Total tetrachlorodibenzofuran	
2378-TCDD	2,3,7,8-Tetrachlorodibenzodioxin	
Total TCDD	Total tetrachlorodibenzodioxin	
12378-PeCDF	1,2,3,7,8-Pentachlorodibenzofuran	
23478-PeCDF	2,3,4,7,8-Pentachlorodibenzofuran	
Total PeCDF	Total pentachlorodibenzofuran	
12378-PeCDD	1,2,3,7,8-Pentachlorodibenzodioxin	
Total PeCDD	Total pentachlorodibenzodioxin	
123478-HxCDF	1,2,3,4,7,8-Hexachlorodibenzofuran	
123678-HxCDF	1,2,3,6,7,8-Hexachlorodibenzofuran	
234678-HxCDF	2,3,4,6,7,8-Hexachlorodibenzofuran	
123789-HxCDF	1,2,3,7,8,9-Hexachlorodibenzofuran	
Total HxCDF	Total hexachlorodibenzofuran	
123478-HxCDD	1,2,3,4,7,8-Hexachlorodibenzodioxin	
123678-HxCDD	1,2,3,6,7,8-Hexachlorodibenzodioxin	
123789-HxCDD	1,2,3,7,8,9-Hexachlorodibenzodioxin	
Total HxCDD	Total hexachlorodibenzodioxin	
1234678-HpCDF	1,2,3,4,6,7,8-Heptachlorodibenzofuran	
1234789-HpCDF	1,2,3,4,7,8,9-Heptachlorodibenzofuran	
Total HpCDF	Total heptachlorodibenzofuran	
1234678-HpCDD	1,2,3,4,6,7,8-Heptachlorodibenzodioxin	
Total HpCDD	Total heptachlorodibenzodioxin	
OCDF	Octachlorodibenzofuran	
OCDD	Octachlorodibenzodioxin	
LOR - Limit of Reporting	LOD - Limit of Detection	NR - Not Reportable

Report Number: 127800 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127800 cancels Report Number 104138. Page 5 of 5

SOURCE TESTING NZ

Dioxin Laboratory Results Period 14 April to 28 April 2015 & Field Blank.

AsureQuality Limited | 1C Quadrant Drive | Weiwhetu | Lower Hult 5010 | Weilington | New Zeeland PO Box 31242 | Lower Hult 5040 | Weilington | New Zeeland t = 94 4 570 6800 | e. ceweilington@asurequality.com | w. www.asurequality.com Global capters in food sectory and quality

Certificate of Analysis

Amended Report

Paul Futter Bay of Pienty Regional Council PO Box 364 Whakatane 3158 New Zealand

PO Number: 75175

leport locued: 25-Jun-2015	AsureQuality Refere	nce: 15-44578	Sample(s) Received: 29-Apr-2015 08:0
ampled Date: 15/2983 (15-44578-1) 28 April 2015			
15/2984 (15-44578-2) 28 April 2015			
straction Date: 1 May 2015			
nalysed Date: 9 May 2015			
Results			
he tests were performed on the samples as received.			
Customer Sample Name: 16/2983 (Air) Lab ID: 15-	44678-1		
Sample Condition: Acceptable			
Test	Result	Unit	Method Reference
Polychiorinated Dibenzo-p-dioxins and Polychiorinated	Dibenzofurans (PCDD/Fs)		
2378-TCDF	31.0	Pg	USEPA Method TO-9A (GC-HRMS)
Total TCDF	924	PG	USEPA Method TO-8A (GC-HRMS)
2378-TCDD	3.80 (E)	PQ	USEPA Method TO-BA (GC-HRMS)
Total TCDD	504 (E)	PG	USEPA Method TO-9A (GC-HRMS)
12378-PeCDF	28.6	PG	USEPA Method TO-9A (GC-HRMS)
23478-PeCDF	49.7	PG	USEPA Method TO-8A (GC-HRMS)
Total PeCDF	641	PG	USEPA Method TO-BA (GC-HRMS)
12378-PeCDD	14.1	PG	USEPA Method TO-8A (GC-HRMS)
Total PeCDD	354	PG	USEPA Method TO-8A (GC-HRMS)
123478-HxCDF	55.8	P9	USEPA Method TO-BA (GC-HRMS)
123678-HxCDF	51.9	PQ	USEPA Method TO-8A (GC-HRMS)
234678-HxCDF	71.3	PG	USEPA Method TO-8A (GC-HRMS)
123789-HxCDF	<7.18	PG	USEPA Method TO-8A (GC-HRMS)
Total HxCDF	474	PG	USEPA Method TO-BA (GC-HRMS)
123478-HxCDD	13.0 (E)	PQ	USEPA Method TO-8A (GC-HRMS)
123678-HxCDD	26.4 (E)	Pg	USEPA Method TO-9A (GC-HRMS)
123789-HxCDD	19.9	P9	USEPA Method TO-BA (GC-HRMS)
Total HxCDD	503 (E)	PG	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDF	181	PG	USEPA Method TO-8A (GC-HRMS)
1234789-HpCDF	29.8	PQ	USEPA Method TO-BA (GC-HRMS)
Total HpCDF	251	PG	USEPA Method TO-BA (GC-HRMS)
1234678-HpCDD	253	P9	USEPA Method TO-9A (GC-HRMS)
Total HpCDD	565	Pg	USEPA Method TO-9A (GC-HRMS)
OCDF	81.5	PG	USEPA Method TO-9A (GC-HRMS)
OCDD	433	PQ	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Lowerbound	4730	PQ	USEPA Method TO-9A (GC-HRMS)

AcceAuity has used reasonable skil, care, and effort to provide an accurate analysis of the sample(s) which form(s) the subject of this report. However, the accuracy of this analysis is inhibit on, and subject to, the sample(s) provided by you and your responsibility as to transportation of the sample(s). AcceAuity's standard terms of business apply to the analysis set out in this report. Report Number: 127822 This report must not be reproduced except in full, without the prior written approval of the laboratory. Page 1 of 6

Report Number 127822 cancels Report Number 107149.

SOURCE TESTING NZ

AsureQuality Reference: 15-44578

Report Issued: 26-Jun-2015

Test	Result	Unit	Method Reference
Sum of PCDD/Fs - Mediumbound	4730	20	USEPA Method TO-8A (GC-HRMS)
Sum of PCDD/Fs - Upperbound	4730	PG	USEPA Method TO-BA (GC-HRMS)
Total PCDD/F WHO-TEQ - Lowerbound	65.4	PG	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Mediumbound	65.7	PG	USEPA Method TO-BA (GC-HRMS)
Total PCDD/F WHO-TEQ - Upperbound	66.1	PG	USEPA Method TO-8A (GC-HRMS)
Total PCDD/F I-TEQ - Lowerbound	69.2	PG	USEPA Method TO-BA (GC-HRMS)
Total PCDD/F I-TEQ - Mediumbound	69.6	PG	USEPA Method TO-BA (GC-HRMS)
Total PCDD/F I-TEQ - Upperbound	09.9	20	USEPA Method TO-9A (GC-HRMS)
Surrogate Standards			
**CI4 2378-TCDD	92	96	USEPA Method TO-8A (GC-HRMS)
Internal Standards			
9Cra 2378-TCDF	82	96	USEPA Method TO-8A (GC-HRMS)
PC+2 2378-TCDD	88	%	USEPA Method TO-9A (GC-HRMS)
"C++ 12378-PeCDF	115	%	USEPA Method TO-8A (GC-HRMS)
9C+s 23478-PeCDF	108	%	USEPA Method TO-8A (GC-HRMS)
"C+2 12378-PeCDD	95	*	USEPA Method TO-8A (GC-HRMS)
PC+2 123478-HxCDF	96	%	USEPA Method TO-9A (GC-HRMS)
PC+2 123678-HxCDF	80	%	USEPA Method TO-BA (GC-HRMS)
PC+234678-HxCDF	90	%	USEPA Method TO-8A (GC-HRMS)
"C1# 123789-HxCDF	95	%	USEPA Method TO-9A (GC-HRMS)
9C+2 123478-HxCDD	102	%	USEPA Method TO-8A (GC-HRMS)
PC+a 123678-HxCDD	88	%	USEPA Method TO-9A (GC-HRMS)
PC+2 1234678-HpCDF	78	*	USEPA Method TO-8A (GC-HRMS)
PC12 1234789-HpCDF	80	%	USEPA Method TO-9A (GC-HRMS)
"C., 1234678-HpCDD	90	%	USEPA Method TO-BA (GC-HRMS)
90-10 0000	58	*	USEPA Method TO-8A (GC-HRMS)
E = Estimated result	00.5425	100 CC	
ustomer Sample Name: 16/2984 (Air) Lab ID: 16-445	78-2		
mpie Condition: Acceptable			
Test	Result	Unit	Method Reference

Test	Result	Unit	Method Reference
Polychiorinated Dibenzo-p-dicutre and Pol	chiorinated Dibenzofurans (PCDD/Fs)		
2378-TCDF	<2.20	PG	USEPA Method TO-9A (GC-HRMS)
Total TCDF	<4.40	PG	USEPA Method TO-BA (GC-HRMS)
2378-TCDD	<3.68	PG	USEPA Method TO-BA (GC-HRMS)
Total TCDD	<3.68	PG	USEPA Method TO-9A (GC-HRMS)
12378-PeCDF	<1.56	PG	USEPA Method TO-BA (GC-HRMS)
23478-PeCDF	<1.64	PG	USEPA Method TO-8A (GC-HRMS)
Total PeCDF	<1.64	99	USEPA Method TO-BA (GC-HRMS)
12378-PeCDD	<4.46	PG	USEPA Method TO-8A (GC-HRMS)
Total PeCDD	<8.91	PG	USEPA Method TO-BA (GC-HRMS)
123478-HxCDF	<4.10	PG	USEPA Method TO-BA (GC-HRMS)
123678-HxCDF	<4.06	Pg	USEPA Method TO-9A (GC-HRMS)
234678-HxCDF	<4.86	PG	USEPA Method TO-BA (GC-HRMS)
123789-HxCDF	<5.73	PG	USEPA Method TO-8A (GC-HRMS)
Total HxCDF	<5.73	PG	USEPA Method TO-BA (GC-HRMS)
123478-HxCDD	<5.99	PG	USEPA Method TO-9A (GC-HRMS)
123678-HxCDD	<5.85	PG	USEPA Method TO-BA (GC-HRMS)
123789-HxCDD	<6.06	PG	USEPA Method TO-8A (GC-HRMS)
Total HxCDD	<6.06	PG	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDF	<5.15	PG	USEPA Method TO-9A (GC-HRMS)

Report Number: 127822 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127822 cancels Report Number 107148.

SOURCE TESTING NZ

D:\STNZ\Clients\Jacobs-SKM\BOPRC\Deliverables\Kopeopeo Canal Remediation Baseline Ambient Dioxin Monitoring 2015.doc

Page 2 of 8

AsureQuality Reference: 15-44578

Report Issued: 26-Jun-2015

Test	Result	Unit	Method Reference
1234789-HpCDF	<7.04	P9	USEPA Method TO-9A (GC-HRMS)
Total HpCDF	<7.04	P9	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDD	<5.64	P9	USEPA Method TO-9A (GC-HRMS)
Total HpCDD	<5.64	Pg	USEPA Method TO-9A (GC-HRMS)
OCDF	<12.5	Pg	USEPA Method TO-9A (GC-HRMS)
OCDD	<4.06	P9	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Mediumbound	29.8	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Upperbound	59.6	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Lowerbound	0.000	PS	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Mediumbound	6.37	PB	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Upperbound	12.7	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Mediumbound	5.44	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Upperbound	10.9	PS	USEPA Method TO-9A (GC-HRMS)
Surrogato Standards			
"CL 2378-TCDD	82	%	USEPA Method TO-9A (GC-HRMS)
internal Standards			
*C-a 2378-TCDF	78	%	USEPA Method TO-9A (GC-HRMS)
C-s 2378-TCDD	85	%	USEPA Method TO-BA (GC-HRMS)
*C-a 12378-PeCDF	108	%	USEPA Method TO-9A (GC-HRMS)
*C-a 23478-PeCDF	102	%	USEPA Method TO-9A (GC-HRMS)
"C-9 12378-PeCDD	90	%	USEPA Method TO-9A (GC-HRMS)
"C-9 123478-HxCDF	95	%	USEPA Method TO-9A (GC-HRMS)
*C+s 123678-HxCDF	80	%	USEPA Method TO-9A (GC-HRMS)
*C-9 234678-HxCDF	85	%	USEPA Method TO-9A (GC-HRMS)
°C-a 123789-HxCDF	92	%	USEPA Method TO-9A (GC-HRMS)
*C-9 123478-HxCDD	102	%	USEPA Method TO-9A (GC-HRMS)
°C-9 123678-HxCDD	85	%	USEPA Method TO-9A (GC-HRMS)
*C-a 1234678-HpCDF	75	%	USEPA Method TO-BA (GC-HRMS)
*C-a 1234789-HpCDF	78	%	USEPA Method TO-9A (GC-HRMS)
"C-a 1234678-HpCDD	92	%	USEPA Method TO-9A (GC-HRMS)
*C-+ OCDD	55	76	USEPA Method TO-9A (GC-HRMS)

QC Results

Blank Relates to sample(s) 15-44578-1, 15-44578-2			
Test	Result	Unit	Method Reference
Polychiorinated Dibenzo-p-dioxins and Polychiorinated Dibenzol	furans (PCDD/Fs)		
2378-TCDF	<2.23	Pg	USEPA Method TO-9A (GC-HRMS)
Total TCDF	<4.46	Pg	USEPA Method TO-9A (GC-HRMS)
2378-TCDD	<2.41	Pg	USEPA Method TO-9A (GC-HRMS)
Total TCDD	<4.81	PS	USEPA Method TO-9A (GC-HRMS)
12378-PeCDF	<1.64	Pg	USEPA Method TO-BA (GC-HRMS)
23478-PeCDF	<1.84	Pg	USEPA Method TO-9A (GC-HRMS)
Total PeCDF	<1.84	PS	USEPA Method TO-9A (GC-HRMS)
12378-PeCDD	<2.71	Pg	USEPA Method TO-9A (GC-HRMS)
Total PeCDD	<5.43	Pg	USEPA Method TO-BA (GC-HRMS)
123478-HxCDF	<4.86	PS	USEPA Method TO-BA (GC-HRMS)

Report Number: 127822 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127822 cancels Report Number 107149.

Page 3 of 6

SOURCE TESTING NZ

AsureQuality Reference: 15-44578

Report Issued: 25-Jun-2015

Test	Result	Unit	Method Reference
123678-HxCDF	<4.93	Pg	USEPA Method TO-9A (GC-HRMS)
234678-HxCDF	<5.40	Pg	USEPA Method TO-6A (GC-HRMS)
123789-HxCDF	<2.38	Pg	USEPA Method TO-9A (GC-HRMS)
Fotal HxCDF	<6.62	P9	USEPA Method TO-9A (GC-HRMS)
123478-HxCDD	<5.38	Pg	USEPA Method TO-9A (GC-HRMS)
123678-HxCDD	<5.42	Pg	USEPA Method TO-9A (GC-HRMS)
123789-HxCDD	<5.42	Pg	USEPA Method TO-GA (GC-HRMS)
Fotal HxCDD	<5.42	Pg	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDF	<2.51	Pg	USEPA Method TO-6A (GC-HRMS)
1234788-HpCDF	<3.39	Pg	USEPA Method TO-9A (GC-HRMS)
otal HpCDF	<3.39	Pg	USEPA Method TO-9A (GC-HRMS)
234678-HpCDD	<5.15	Pg	USEPA Method TO-GA (GC-HRMS)
etal HpCDD	<5.15	Pg	USEPA Method TO-6A (GC-HRMS)
COF	<10.9	Pg	USEPA Method TO-6A (GC-HRMS)
000	<8.88	P9	USEPA Method TO-BA (GC-HRMS)
sum of PCDD/Fs - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
sum of PCDD/Fs - Mediumbound	28.4	Pg	USEPA Method TO-9A (GC-HRMS)
um of PCDD/Fs - Upperbound	58.9	Pg	USEPA Method TO-GA (GC-HRMS)
otal PCDD/F WHO-TEQ - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
otal PCDD/F WHO-TEQ - Mediumbound	4.72	Pg	USEPA Method TO-9A (GC-HRMS)
otal PCDD/F WHO-TEQ - Upperbound	9.44	Pg	USEPA Method TO-9A (GC-HRMS)
otal PCDD/F I-TEQ - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
otal PCDD/F I-TEQ - Mediumbound	4.25	Pg	USEPA Method TO-6A (GC-HRMS)
otal PCDD/F I-TEQ - Upperbound	8.50	Pg	USEPA Method TO-6A (GC-HRMS)
urrogete Standarde			
'Cl. 2378-TCDD	98	%	USEPA Method TO-9A (GC-HRMS)
ternal Standards			
C++ 2378-TCDF	82	%	USEPA Method TO-9A (GC-HRMS)
Cn2 2378-TCDD	85	%	USEPA Method TO-9A (GC-HRMS)
C12 12378-PeCDF	112	%	USEPA Method TO-9A (GC-HRMS)
*C+2 23478-PeCDF	102	%	USEPA Method TO-GA (GC-HRMS)
*C++ 12378-PeCDD	92	%	USEPA Method TO-6A (GC-HRMS)
C++ 123478-HxCDF	82	%	USEPA Method TO-6A (GC-HRMS)
*C+2 123678-HxCDF	78	%	USEPA Method TO-9A (GC-HRMS)
*C+2 234678-HxCDF	85	96	USEPA Method TO-9A (GC-HRMS)
*C++ 123789-HxCDF	103	96	USEPA Method TO-9A (GC-HRMS)
C+# 123478-HxCDD	102	%	USEPA Method TO-6A (GC-HRMS)
*C++ 123678-HxCDD	85	%	USEPA Method TO-9A (GC-HRMS)
*C+2 1234878-HpCDF	80	96	USEPA Method TO-9A (GC-HRMS)
°Cn 1234789-HpCDF	82	96	USEPA Method TO-9A (GC-HRMS)
"C12 1234678-HpCDD	95	%	USEPA Method TO-9A (GC-HRMS)
*C++ OCDD	58	%	USEPA Method TO-6A (GC-HRMS)

Report Number: 127822 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127822 cancels Report Number 107149. Page 4 of 8

SOURCE TESTING NZ

AsureQuality Reference: 15-44578	Report Issued: 25-Jun-2015
47F	2
Analysis Summary	

Wellington Laboratory					
Analysis	Method	Accreditation	Authorised by		
Polychiorinated Dibenzo-p-dickine an	nd Polychlorinated Diberzofurans (PCDD/Fs)				
DX-DIOX03, 01-DEFAULT	USEPA Method TO-9A (GC-HRMS)	IANZ	Phil Bridgen		
DX-DIOX03, 01-DEFAULT	USEPA Method TO-9A (GC-HFMS)	IANZ	Phil	Bridgen	

The total toxic equivalence (TEQ) is calculated for each sample using both WHO toxic equivalency factors (WHO-TEFs; Van den Berg et al., 2005) and internetional toxic equivalency factors (I-TEFs; Kutz et al., 1990).

Lowerbound concept uses zero for the contribution of each non-quantified analyte. Mediumbound concept uses half of the reporting limit for the contribution of each non-quantified analyte.

Results that are prefixed with '<' indicate the lowest level at which the analyte can be reported, and that in this case the analyte was not observed above this limit.

Phil Bridgen Senior Scientist

Accreditation

Report Number: 127822 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127822 cancels Report Number 107149. Page 6 of 8

SOURCE TESTING NZ

AsureQuality Reference: 15-	44578	Report Issued: 26-Jun-201
Appendix		
Analyte Summary		
Anal∳te Definitions (Environm	ental Tests)	
	ns and Polychlorinated Dibenzofurans (PCDD/Fs)	USEPA Method TO.9A (GC.HRMS)
Analfte	Full Name	
2378-TCDF	2,3,7,8-Tetrachiorodibenzofuran	
Total TCDF	Total tetrachiorodibenzofuran	
2378-TCDD	2,3,7,8-Tetrachiorodibenzodicxin	
Total TCDD	Total tetrachiorodibenzodioxin	
12378-PeCDF	1,2,3,7,8-Pentachlorodibenzofuran	
23478-PeCDF	2,3,4,7,8-Pentachlorodibenzofuran	
Total PeCDF	Total pentachiorodibenzofunan	
12378-PeCDD	1,2,3,7,8-Pentachlorodibenzodioxin	
Total PeCDD	Total pentachiorodibenzodioxin	
123478-HxCDF	1,2,3,4,7,8-Hexachiorodibenzofuran	
123678-HxCDF	1,2,3,6,7,8-Hexachiorodiberizofuran	
234678-HxCDF	2,3,4,6,7,8-Hexachiorodiberizofuran	
123789-HxCDF	1,2,3,7,8,9-Hexachlorodibenzofuran	
Total HxCDF	Total hexachlorodibenzofuran	
123478-HxCDD	1,2,3,4,7,8-Hexachlorodiberzodioxin	
123678-HxCDD	1,2,3,6,7,8-Hexachiorodibenzodioxin	
123789-HxCDD	1,2,3,7,8,9-Hexachlorodibenzodicxin	
Total HxCDD	Total hexachlorodiberzodioxin	
1234678-HpCDF	1,2,3,4,6,7,8-Heptachlorodibenzofunan	
1234789-HpCDF	1,2,3,4,7,8,9-Heptachiorodibenzofuran	
Total HpCDF	Total heptachiorodibenzofuran	
1234678-HpCDD	1,2,3,4,6,7,8-Heptachlorodibenzodicein	
Total HpCDD	Total heptachiorodiberizodioxin	
OCDF	Octachiorodibenzofuran	
OCDD	Octachlorodibenzodicxin	
LOR - Limit of Reporting	LOD - Limit of Detection	NR - Not Reportable

Report Number: 127822 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127822 cancels Report Number 107149. Page 6 of 6

SOURCE TESTING NZ

Dioxin Lab Results Periods 28 April to 12 May & 12 May to 26 May 2015

AsureQuality Limited | 1C Quadrant Drive | Walwhetu | Lower Hutt 5010 | Weilington | New Zealand PO Box 31242 | Lower Hutt 5040 | Weilington | New Zealand t ~54.4 570 8800 | e. cavelington@saurequality.com | w. www.asurequality.com Cilokal experts in food safety and quality

Certificate of Analysis

Amended Report

Paul Futter Bay of Pienty Regional Council PO Box 364 Whakatane 3158 New Zealand

PO Number: 72988

	(11)		
ampled Date: 15/3176 (15-58934-1) 12 May 2015 15/3467 (15-58934-2) 26 May 2015			
xtraction Date: 29 May 2015			
nalysed Date: 2 June 2015			
Results			
he tests were performed on the samples as received.			
Sustomer Sample Name: 16-3176 (Air) Lab ID: 15-5	8934.1		
ample Condition: Acceptable			
Test	Result	Unit	Method Reference
Polychiorinated Dibenzo-p-dioxins and Polychiorinated	Dibenzofurans (PCDD/Fs)		
2378-TCDF	28.6	P9	USEPA Method TO-9A (GC-HRMS)
Total TCDF	878	P9	USEPA Method TO-9A (GC-HRMS)
2378-TCDD	47.8	P9	USEPA Method TO-9A (GC-HRMS)
Total TCDD	1090	Pg	USEPA Method TO-9A (GC-HRMS)
12378-PeCOF	21.4	P9	USEPA Method TO-9A (GC-HRMS)
23478-PeCDF	39.5	P9	USEPA Method TO-9A (GC-HRMS)
Total PeCDF	584	P9	USEPA Method TO-9A (GC-HRMS)
12378-PeCDD	159	PS	USEPA Method TO-9A (GC-HRMS)
Total PeCDD	2060	Pg	USEPA Method TO-9A (GC-HRMS)
123478-HxCDF	53.8	P9	USEPA Method TO-9A (GC-HRMS)
123678-HxCDF	41.9	P9	USEPA Method TO-9A (GC-HRMS)
234678-HxCDF	60.9	P9	USEPA Method TO-9A (GC-HRMS)
123789-HxCDF	<14.0	Pg	USEPA Method TO-BA (GC-HRMS)
Total HxCDF	688	Pg	USEPA Method TO-9A (GC-HRMS)
123478-HxCDD	122	P9	USEPA Method TO-9A (GC-HRMS)
123678-HxCDD	324	P9	USEPA Method TO-9A (GC-HRMS)
123789-HxCDD	380	P9	USEPA Method TO-9A (GC-HRMS)
Total HxCDD	4910	Pg	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDF	282	P9	USEPA Method TO-9A (GC-HRMS)
1234789-HpCDF	29.0	P9	USEPA Method TO-9A (GC-HRMS)
Total HpCDF	601	P9	USEPA Method TO-9A (GC-HRMS)
1234678-HpCDD	3900	P9	USEPA Method TO-9A (GC-HRMS)
Total HpCDD	9390	Pg	USEPA Method TO-BA (GC-HRMS)
OCDF	270	Pg	USEPA Method TO-9A (GC-HRMS)
OCDD	7050	P9	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Lowerbound	27500	P9	USEPA Method TO-9A (GC-HRMS)

Additional was and research and the second s

Report Number: 127837 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127837 canoels Report Number 120673.

SOURCE TESTING NZ

AsureQuality Reference: 15-58934

Report Issued: 26-Jun-2015

Test	Result	Unit	Method Reference
Sum of PCDD/Fs - Mediumbound	27500	P9	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Upperbound	27500	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Lowerbound	365	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Mediumbound	365	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Upperbound	366	PB	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Lowerbound	299	P9.	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Mediumbound	299	PB	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Upperbound	300	Pg	USEPA Method TO-9A (GC-HRMS)
Surrogate Standards			
"CL 2378-TCDD	100	%	USEPA Method TO-9A (GC-HRMS)
Internal Standards			
"C-s 2378-TCDF	100	%	USEPA Method TO-9A (GC-HRMS)
*C-9 2378-TCDD	92	%	USEPA Method TO-9A (GC-HRMS)
"C+ 12378-PeCDF	92	%	USEPA Method TO-9A (GC-HRMS)
"C- 23478-PoCDF	92	%	USEPA Method TO-9A (GC-HRMS)
"C-# 12378-PeCDD	102	%	USEPA Method TO-9A (GC-HRMS)
*C-s 123478-HxCDF	98	%	USEPA Method TO-9A (GC-HRMS)
"C-# 123678-HxCDF	85	%	USEPA Method TO-BA (GC-HRMS)
*C-a 234678-HxCDF	92	36	USEPA Method TO-9A (GC-HRMS)
"C-9 123789-HxCDF	92	96	USEPA Method TO-9A (GC-HRMS)
"C-y 123478-HxCDD	110	%	USEPA Method TO-9A (GC-HRMS)
*C-s 123678-HxCDD	85	%	USEPA Method TO-9A (GC-HRMS)
*C-# 1234678-HpCDF	82	%	USEPA Method TO-9A (GC-HRMS)
*C-a 1234789-HpCDF	90	36	USEPA Method TO-9A (GC-HRMS)
*C-9 1234678-HpCDD	92	96	USEPA Method TO-9A (GC-HRMS)
"C- OCDD	52	36	USEPA Method TO-9A (GC-HRMS)

Customer Sample Name: 15-3467 (Air) Lab ID: 15-58934-2 Sample Condition: Acceptable

ample Condition: Acceptable			
Test	Result	Unit	Method Reference
Polychlorinated Dibenzo-p-dioxins and Poly	chiorinated Dibenzofurans (PCDD/Fs)	_	
2378-TCDF	32.9	P9	USEPA Method TO-9A (GC-HRMS)
Total TCDF	759	P9	USEPA Method TO-9A (GC-HRMS)
2378-TCDD	<3.20	P9	USEPA Method TO-9A (GC-HRMS)
Total TCDD	223	PG	USEPA Method TO-9A (GC-HRMS)
12378-PeCDF	16.4	PS	USEPA Method TO-9A (GC-HRMS)
23478-PeCDF	24.3	PB	USEPA Method TO-9A (GC-HRMS)
Total PeCDF	330	PS	USEPA Method TO-9A (GC-HRMS)
12378-PeCDD	11.5 (E)	P9	USEPA Method TO-9A (GC-HRMS)
Total PeCDD	126 (E)	Pg	USEPA Method TO-9A (GC-HRMS)
123478-HxCDF	26.7	Pg	USEPA Method TO-9A (GC-HRMS)
123678-HxCDF	18.4	PB	USEPA Method TO-9A (GC-HRMS)
234678-HxCDF	26.6	P9	USEPA Method TO-9A (GC-HRMS)
123789-HxCDF	<17.4	Pg	USEPA Method TO-8A (GC-HRMS)
Total HxCDF	181	Pg	USEPA Method TO-9A (GC-HRMS)
123478-HxCDD	13.7 (E)	PS	USEPA Method TO-9A (GC-HRMS)
123678-HxCDD	24.1	PB	USEPA Method TO-9A (GC-HRMS)
123789-HxCDD	<19.9	P9	USEPA Method TO-9A (GC-HRMS)
Total HxCDD	357 (E)	Pg	USEPA Method TO-BA (GC-HRMS)
1234678-HpCDF	69.6	Pg	USEPA Method TO-9A (GC-HRMS)
1234789-HpCDF	<23.8	Pg	USEPA Method TO-9A (GC-HRMS)

Report Number: 127897 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127837 cancels. Report Number 120679.

Page 2 of 8

SOURCE TESTING NZ

AsureQuality Reference: 15-58934

Report Issued: 26-Jun-2015

Test	Result	Unit	Method Reference
Total HpCDF	69.6	Pg	USEPA Method TO-BA (GC-HRMS)
1234678-HpCDD	326	P9	USEPA Method TO-BA (GC-HRMS)
Total HpCDD	821	PS	USEPA Method TO-BA (GC-HRMS)
OCDF	34.0	Pg	USEPA Method TO-9A (GC-HRMS)
OCDD	749	P9	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Lowerbound	3650	P9	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Mediumbound	3650	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Upperbound	3650	PS	USEPA Method TO-BA (GC-HRMS)
Total PCDD/F WHO-TEQ - Lowerbound	37.7	Pg	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Mediumbound	41.3	P9	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F WHO-TEQ - Upperbound	44.9	P9	USEPA Method TD-9A (GC-HRMS)
Total PCDD/F I-TEQ - Lowerbound	37.7	PB	USEPA Method TO-9A (GC-HRMS)
Total PCDD/F I-TEQ - Mediumbound	41.3	P9	USEPA Method TO-BA (GC-HRMS)
fotal PCDD/F I-TEQ - Upperbound	44.9	Pg	USEPA Method TO-9A (GC-HRMS)
Surrogato Standards		1000	
"CL 2378-TCDD	105	%	USEPA Method TO-9A (GC-HRMS)
nternal Standards			
C-9 2378-TCDF	108	%	USEPA Method TO-9A (GC-HRMS)
C-9 2378-TCDD	98	94	USEPA Method TO-9A (GC-HRMS)
C-s 12378-PeCDF	92	%	USEPA Method TO-9A (GC-HRMS)
*C-9 23478-PeCDF	92	%	USEPA Method TO-9A (GC-HRMS)
"C-a 12378-PeCDD	105	%	USEPA Method TO-9A (GC-HRMS)
*C-s 123478-HxCDF	99	76	USEPA Method TO-9A (GC-HRMS)
*C-9 123678-HxCDF	82	94	USEPA Method TO-9A (GC-HRMS)
"C-9 234678-HxCDF	90	*	USEPA Method TO-9A (GC-HRMS)
*C-s 123789-HxCDF	92	%	USEPA Method TO-BA (GC-HRMS)
*C-s 123478-HxCDD	110	%	USEPA Method TO-9A (GC-HRMS)
*C-s 123678-HxCDD	90	76	USEPA Method TO-9A (GC-HRMS)
"C-9 1234678-HpCDF	78	94	USEPA Method TO-9A (GC-HRMS)
"C+# 1234789-HpCDF	85	%	USEPA Method TO-9A (GC-HRMS)
PC-s 1234678-HpCDD	92	*	USEPA Method TO-BA (GC-HRMS)
*C-9 OCDD	50	%	USEPA Method TO-9A (GC-HRMS)

E = Estimated result

QC Results Blank

Relates to sample(s) 15-58934-1, 15-58934-2			
Test	Result	Unit	Method Reference
Polychiorinated Dibenzo-p-dioxins and Polychiorinated	d Dibenzofurans (PCDD/Fs)		
2378-TCDF	<4.30	PS	USEPA Method TO-9A (GC-HRMS)
Total TCDF	<4.30	P9	USEPA Method TO-BA (GC-HRMS)
2378-TCDD	<2.29	P9	USEPA Method TO-9A (GC-HRMS)
Total TCDD	<4.58	P9	USEPA Method TO-BA (GC-HRMS)
12378-PeCDF	<3.77	Pg	USEPA Method TO-9A (GC-HRMS)
23478-PeCDF	<3.80	PS	USEPA Method TO-9A (GC-HRMS)
Total PeCDF	<3.80	Pg	USEPA Method TO-9A (GC-HRMS)
12378-PeCDD	<3.32	Pg	USEPA Method TO-BA (GC-HRMS)
Total PeCDD	<11.1	P9	USEPA Method TO-9A (GC-HRMS)
123478-HxCDF	<4.74	Pg	USEPA Method TO-9A (GC-HRMS)

Report Number: 127837 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127837 cancels Report Number 120673. Page 3 of 8

SOURCE TESTING NZ

AsureQuality Reference: 15-58934

Report Issued: 26-Jun-2015

Test	Result	Unit	Method Reference
123878-HxCDF	<4.70	Pg	USEPA Method TO-9A (GC-HRMS)
234678-HxCDF	<5.21	Pg	USEPA Method TO-6A (GC-HRMS)
123786-HxCDF	<7.07	Pg	USEPA Method TO-6A (GC-HRMS)
Fotal HxCDF	<7.07	Pg	USEPA Method TO-9A (GC-HRMS)
123478-HxCDD	<5.65	P9	USEPA Method TO-9A (GC-HRMS)
123678-HxCDD	<5.89	Pg	USEPA Method TO-9A (GC-HRMS)
123789-HxCDD	<5.71	Pg	USEPA Method TO-GA (GC-HRMS)
Total HxCDD	<5.89	Pg	USEPA Method TO-6A (GC-HRMS)
1234678-HpCDF	<4.45	Pg	USEPA Method TO-9A (GC-HRMS)
1234789-HpCDF	<6.68	P9	USEPA Method TO-9A (GC-HRMS)
fotal HpCDF	<5.68	Pg	USEPA Method TO-9A (GC-HRMS)
234678-HpCDD	<7.19	Pg	USEPA Method TO-9A (GC-HRMS)
Total HpCDD	<7.19	Pg	USEPA Method TO-9A (GC-HRMS)
COF	<17,1	Pg	USEPA Method TO-9A (GC-HRMS)
000	<13.3	Pg	USEPA Method TO-9A (GC-HRMS)
Sum of PCDD/Fs - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
sum of PCDD/Fs - Mediumbound	40.5	Pg	USEPA Method TO-9A (GC-HRMS)
sum of PCDD/Fs - Upperbound	81.0	Pg	USEPA Method TO-9A (GC-HRMS)
atal PCDD/F WHO-TEQ - Lowerbound	0.000	Pg	USEPA Method TO-6A (GC-HRMS)
otal PCDD/F WHO-TEQ - Mediumbound	5.69	Pg	USEPA Method TO-9A (GC-HRMS)
otal PCDD/F WHO-TEQ - Upperbound	11.4	Pg	USEPA Method TO-BA (GC-HRMS)
otal PCDD/F I-TEQ - Lowerbound	0.000	Pg	USEPA Method TO-9A (GC-HRMS)
otal PCDD/F I-TEQ - Mediumbound	5.29	Pg	USEPA Method TO-9A (GC-HRMS)
otal PCDD/F I-TEQ - Upperbound	10.6	Pg	USEPA Method TO-6A (GC-HRMS)
urrogate Standards			
*Cia 2378-TCDD	100	96	USEPA Method TO-9A (GC-HRMS)
ternal Standards			
C++ 2378-TCDF	95	%	USEPA Method TO-9A (GC-HRMS)
C++ 2378-TCDD	95	96	USEPA Method TO-9A (GC-HRMS)
Cn 12378-PeCDF	95	%	USEPA Method TO-9A (GC-HRMS)
C12 23478-PeCDF	92	%	USEPA Method TO-9A (GC-HRMS)
*C+# 12378-P#CDD	105	%	USEPA Method TO-6A (GC-HRMS)
C++ 123478-HxCDF	92	%	USEPA Method TO-9A (GC-HRMS)
*C+2 123878-HxCDF	80	96	USEPA Method TO-8A (GC-HRMS)
Cnz 234678-HxCDF	90	96	USEPA Method TO-9A (GC-HRMS)
C+2 123789-HxCDF	88	%	USEPA Method TO-9A (GC-HRMS)
Cre 123478-HxCDD	110	%	USEPA Method TO-GA (GC-HRMS)
C++ 123678-HxCDD	90	%	USEPA Method TO-9A (GC-HRMS)
°C+, 1234678-HpCDF	75	%	USEPA Method TO-9A (GC-HRMS)
"Cro 1234789-HpCDF	78	%	USEPA Method TO-9A (GC-HRMS)
°Cn 1234878-HpCDD	82	96	USEPA Method TO-9A (GC-HRMS)
°C+2 OCDD	48	%	USEPA Method TO-9A (GC-HRMS)

Report Number: 127837 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127837 cancels Report Number 120673. Page 4 of 8

SOURCE TESTING NZ

AsureQuality Reference: 15-58934	Report Issued: 26-Jun-2019	
Analysis Summary		

Wellington Laboratory	ellington Laboratory			
Analysis	Method	Accreditation	Authorised by	
Polychiorinated Dibenzo-p-dioxine	and Polychlorinated Dibenzofurans (PCDD/Fs)			
DX-DIOX03, 01-DEFAULT	USEPA Method TO-9A (GC-HRMS)	IANZ	Phil Bridgen	

The total toxic equivalence (TEQ) is calculated for each sample using both WHO toxic equivalency factors (WHO-TEFs; Van den Berg et al., 2005) and internetional toxic equivalency factors (I-TEFs; Kutz et al., 1990).

Lowerbound concept uses zero for the contribution of each non-quantified analyte. Mediumbound concept uses half of the reporting limit for the contribution of each non-quantified analyte. Upperbound concept uses the reporting limit for the contribution for each non-quantified analyte.

Results that are prefixed with '<' indicate the lowest level at which the analyte can be reported, and that in this case the analyte was not observed above this limit.

Phil Bridgen Senior Scientist

Accreditation

Report Number: 127837 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127837 cancels Report Number 120673. Page 6 of 8

SOURCE TESTING NZ

AsureQuality Reference: 15-	58934	Report Issued: 26-Jun-201
Appendix		
Analyte Summary		
Anal∳te Definitions (Environm	ental Tests)	
Polychlorinated Dibenzo-p-dioxir	ns and Polychlorinated Dibenzofurans (PCDD/Fs)	USEPA Method TO-9A (GC-HRMS)
Analfte	Full Name	
2378-TCDF	2,3,7,8-Tetrachiorodibenzofuran	
Total TCDF	Total tetrachiorodibenzofuran	
2378-TCDD	2,3,7,8-Tetrachiorodibenzodioxin	
Total TCDD	Total tetrachiorodibenzodioxin	
12378-PeCDF	1,2,3,7,8-Pentachiorodibenzofuran	
23478-PeCOF	2,3,4,7,8-Pentachlorodibenzofuran	
Total PeCDF	Total pentachiorodibenzofuran	
12378-PeCDD	1,2,3,7,8-Pentachiorodibenzodioxin	
Total PeCDD	Total pentachiorodibenzodioxin	
123478-HxCDF	1,2,3,4,7,8-Hexachiorodibenzofuran	
123678-HxCDF	1,2,3,6,7,8-Hexachiorodiberizofuran	
234678-HxCDF	2,3,4,6,7,8-Hexachiorodibenzofuran	
123789-HxCDF	1,2,3,7,8,9-Hexachiorodibenzofuran	
Total HxCDF	Total hexachlorodibenzofuran	
123478-HxCDD	1,2,3,4,7,8-Hexachiorodibenzodicsin	
123678-HxCDD	1,2,3,6,7,8-Hexachiorodibenzodicxin	
123789-HxCDD	1,2,3,7,8,9-Hexachiorodibenzodictin	
Total HxCDD	Total hexachlorodibenzodioxin	
1234678-HpCDF	1,2,3,4,6,7,8-Heptachiorodibenzofuran	
1234789-HpCDF	1,2,3,4,7,8,9-Heptachlorodibenzofuran	
Total HpCDF	Total heptachiorodiberizofuran	
1234878-HpCDD	1,2,3,4,6,7,8-Heptachiorodibenzodicoin	
Total HpCDD	Total heptachiorodibenzodioxin	
OCDF	Octachiorodibenzofuran	
OCDD	Octachiorodiberzodicxin	
LOR - Limit of Reporting	LOD = Limit of Detection	NR - Not Reportable

Report Number: 127837 This report must not be reproduced except in full, without the prior written approval of the laboratory. Report Number 127837 cancels Report Number 120673. Page 6 of 6

SOURCE TESTING NZ