

Rangitāiki Freshwater FuturesCommunity GroupSurface water qualityWorkshop 10, 27 May 2019

Nau mai Hoki mai!

Moemoeā – Vision

E ora ana te mauri o te awa Rangitāiki, e manaakitia ana e te iwi, e tiakina ana mō ngā whakatipuranga ō muri mai. Tihei Mauri Ora

A healthy Rangitāiki River, valued by the community, protected for future generations. Tihei Mauri Ora.

1.

Technical modelling discussion (optional)

Welcome

- Apologies
- Welcome
 - Rangitāiki River Forum members
 - New attendees (alternates and visitors)

Housekeeping

- Fire protocol
- Toilets
- Meals
- Recording and sharing notes
- Make yourself at home

Purpose of this group

To help Council implement the National Policy Statement for Freshwater Management:

- confirm values, express preferred objectives
- provide feedback on limits for freshwater quality and quantity within this Water Management Area
- provide input to solutions for managing activities to meet those limits
- advise Council in their decision-making for Plan Change 12

Purpose today:

Focus – Surface water quality

- To demonstrate our journey knit the story together of how your input has directed the work so far (values/desired objectives/options)
- To talk through surface water quality information and implications
- To seek approval in principle of draft objectives and potential policy direction

Agenda

- 1. Technical modelling discussion (optional)
- 2. Matahina HEP dam lake water quality
- 3. National and regional updates
- 4. The story so far

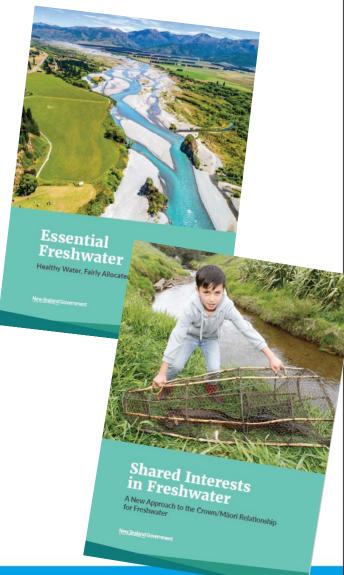
am tea

- 5. Scenarios recap and explain mitigation scenario
- 6. Good management practice mitigation scenario results
- 7. Implications
- 8. Summary and next steps

Outcomes sought today

That you:

- understand and accept/confirm the key water quality issues and proposed focus of management approaches for the Rangitāiki Water Management Area.
- approve in principle the management options being explored.


Updates

National Update – Essential Freshwater

Public consultation July/Aug 2019

Large policy package to:

- Stop degradation and loss
- Address past damage
- Address allocation issues

res

Proposed Plan Change 9: Region-wide Water Quantity

Environment Court appeal topics

Māori values and relationships	Governance and decision making	Cultural use and economic development	Tangata whenua general
NPSFM, Planning and WMA	Unauthorised dairy takes	Renewable electricity	Limits, flows and levels, over allocation
Rules, consents schedule 7	Municipal water supplies	Rootstock survival water	Transfer of permits

Timeline: Rangitāiki (PC12)

Solu buil Now 20 ! Dependent on ...
 National Policy
 Plan Change 9 progress
 Modelling delays

. . .

Discussion document / public communications

Hearings

Calendar

Workshop 8: Sept 2018

 Modelling results - baseline and development

Workshop 9: Mar 2019

• Groundwater quantity

Workshop 10: May

• Water quality - Dam lake water quality, good practice modelling results, policy options.

Lowland modified watercourses

You have said (in summary) ...

- Water quality will be suitable for swimming, customary and ceremonial activities
- Ecosystem health and habitat for indigenous species will be improved
- Natural character will be improved
- Enable navigation/tauranga waka that does not impact river banks

Lowland - drainage canal and drain water quality and ecology report

- Poor habitat at all sites
 - heavily modified channels, lack of bank vegetation and shade
- Poor water quality
 - high nutrients (ammonia in particular), high turbidity, low DO levels
- Low macroinvertebrate (MCI) scores
 poor ecological conditions
- Relatively diverse fish fauna (18 species)
- Low richness and Fish_IBI
- Eel mortality at pump stations
- Drainage focus to protect from flooding has adversely affected other values

Management focus

National requirements ...

In modified natural watercourses:

- Action plan to improve MCI where it is <80
- Reduce ammonia levels to at least C band for toxicity

Also needed ...

- Reduce temperature
- Reduce *E.coli*
- Reduce turbidity
- Improve habitat and fish passage

Matahina HEP dam lake water quality

Outline

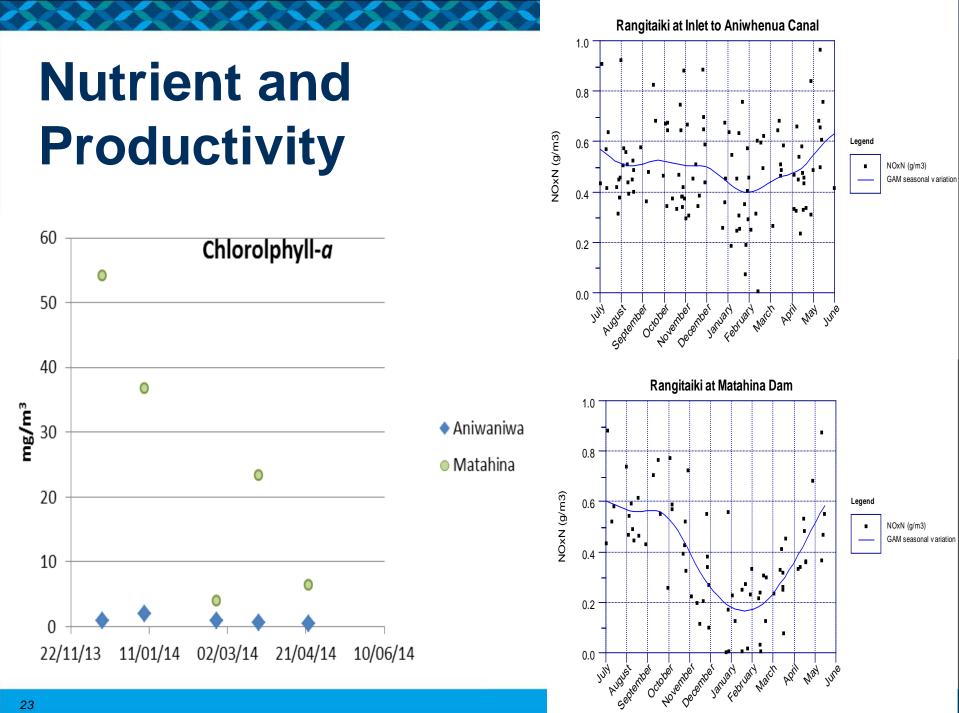
- Introduction
- Lake or River?
- Current State/Issues
- Recommendations
- Summary

Introduction

1000ft 250m Х: Y: Galatea Road

Lake Matahina

BOPRC I Bay of Plenty Regional Counc


Lake or River?

How do these impoundments function?

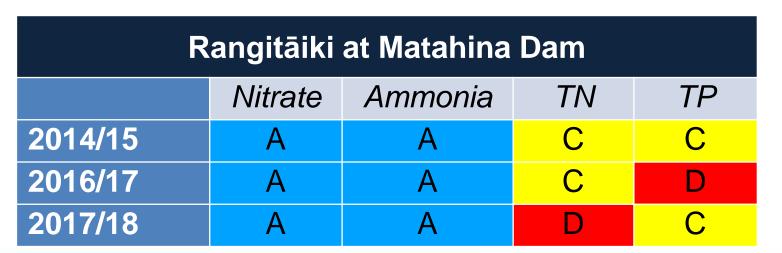
	River	Lake
Residence time	Seconds/minutes	Hours/days
Deposition	Transitional	Permanent
Algal structure	Periphyton	Phytoplankton
Stratification/ mixing	Well mixed	Vertical density changes
Light regime	Full euphotic zone	Depth limited
Energy	Unstable	Stable

Hydrological characteristics

	Aniwaniwa	Matahina
Surface area	104 ha	230 ha
Operating level	146.8 to 146.6m RL	73.15 to 76.2m RL
Depth (max range)	8-10m	40-50m
Depth (shallow range)	1-3m	1-4m
Storage volume	385,000m ^{3 *1}	~105.5 Mm ³
Mean outflow	38.97 m ³ /s * ³	71 m ³ /s * ²
Residence time	e time 2.7 hours 12 21 (au	
Stratifies	No??	Yes – Sept-May

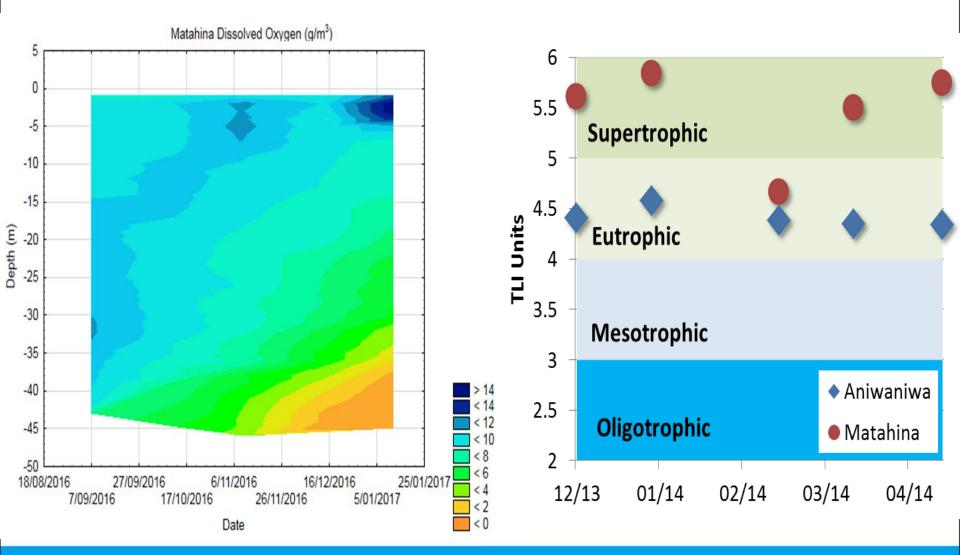
Issues Risks

Ecological risk from damming


- Reduced connectivity food web changes
- Sedimentation feeding, foraging, & habitat impacts
- Changing nutrient status algae (productivity) shifts
- Bottom water oxygen loss habitat loss, nutrient release
- Toxicity risk ammonia & nitrate risk to sensitive species

Current State

Table: NPS-FW Attribute State


Rangitāiki at Inlet to Aniwhenua Canal

	Nitrate	Ammonia	TN	TP
2014/15	А	А	С	D
2016/17	А	А	С	D
2017/18	А	А	С	D

A Good
B 1
C 2
Poor

Current State Trophic status and oxygen

Lake or River?

How do these impoundments function?

	River		Lake
Residence time	Seconds/minutes	<	Hours/days
Deposition	Transitional	$\leftarrow $ $\bigcirc $ $\bigcirc $ \rightarrow	Permanent
Algae	Periphyton	←	Phytoplankton
Stratification/ mixing	Well mixed		Vertical density changes
Light regime	Full euphotic zone		Depth limited
Energy	Poor	$\leftarrow 0 \longrightarrow$	Poor - rich
	Aniwaniwa	Matahina	

Recommendation Aniwaniwa

Run of the river system – river system attributes:

- Nitrate-nitrogen ecosystem health (toxicity).
- Ammoniacal-nitrogen ecosystem health (toxicity).
- Temperature.
- *pH.*

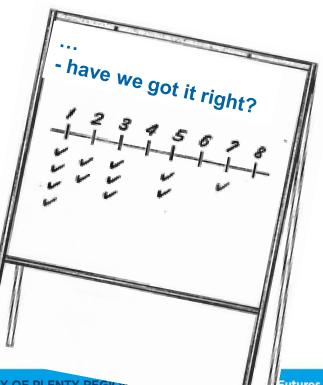
Recommendation Matahina

Lake system – lake attributes:

- Total nitrogen ecosystem health (lake).
- Total phosphorus ecosystem health (lake).
- Phytoplankton (Chlorophyll-a) ecosystem health (assess in changes in lake productivity).
- Water clarity (Secchi depth).
- Cyanobacteria (planktonic) human health (lake).

Recommended draft objectives - Aniwaniwa and Matahina

Attribute	River Attributes	Lake Attributes	Objective value	
	Aniwaniwa	Matahina		
Total nitrogen		С		
Nitrate	А			
Ammoniacal- nitrogen	А	А	 Ecosystem health Indigenous species Mabinga kai 	
Total phosphorus		С	Mahinga kaiFishing	
Chlorophyll-a (Phytoplankton)		С		
Water clarity		To be established	Ecosystem healthHuman health	
Macrophyte (LakeSPI)		To be established	FishingEcosystem healthIndigenous species	
Cyanobacteria - planktonic		А	Contact recreationCustomary use	


Discussion Questions

- 1. Do you accept the objectives to **maintain** water quality in the C band for TN, TP and Chlorophyll *a*?
- 2. Do you accept the need to *arrest* increasing trends in nitrogen supply across the catchment as a priority?
- 3. What concerns/questions do you have about this?

Gradients of Agreement

Have we got it right?

- 1 = whole hearted support
- 2 = agreement with minor point of contention
- 3 = support with reservations
- 4 = abstain
- 5 = more discussion needed
- 6 = don't like but will support
- 7 = serious disagreement
- 8 = veto

The story so far

Issues – Rangitāiki

- Risk of increasing nutrients from more intense land use
- Dam lakes gathering too much nutrients and sediment
- Lower Rangitāiki is heavily modified impacts on water values
- Tuna and indigenous fish impacted
- Water availability constrained
- Algal blooms and *E.coli* generally not an issue

Working draft objectives

objective is met

objective not met

insufficient data

Attribute	River Attributes	Lake Attributes
	Aniwaniwa	Matahina
Total nitrogen (TN)		С
Nitrate	А	
Ammoniacal-nitrogen	А	А
Total phosphorus (TP)		С
Chlorophyll-a (Phytoplankton)		С
Water clarity (Secchi depth)		? To be established
Macrophyte (LakeSPI)		? To be established
Cyanobacteria - planktonic		А

Working draft objectives

objective is met

objective not met

insufficient data

FMU	Lower Rangitāiki	Mid-Upper Rangitāiki	Whirinaki/Urewera (Natural)
Attribute	Objective	Objective	Objective
Macro Invertebrate Community Index (MCI)	В	В	А
EPT	В	В	А
Bay of Plenty Index of Biotic Integrity (BOP- _IBI)	В	В	А
Periphyton	В	В	А
Macrophytes	<50%	<50%	<50%
Nitrate-nitrogen (toxicity)[5]	А	А	А
Ammonia-nitrogen (toxicity)	А	А	А
Dissolved Oxygen (below point sources)	В	А	А

Working Draft Objectives

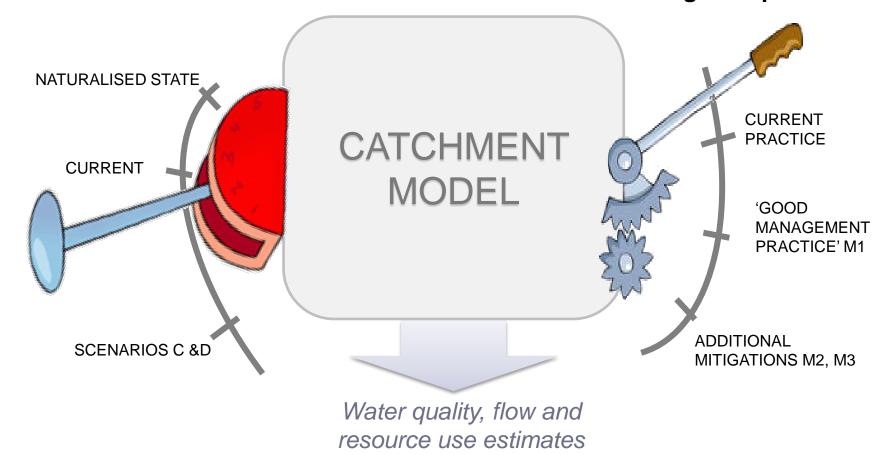

FMU	Lower Rangitāiki	Mid-Upper Rangitāiki	Whirinaki/Urewera (Natural)
Acidity (pH)	В	А	А
Temperature (summer Cox- Rutherford Index)	В	А	А
Habitat protection level provided by river flows for indicator species (% of habitat available at Mean Annual Low Flow)	95% for trout angling 90% for trout spawning and Koaro 80% for juvenile longfin eels 75% for adult longfin eels	Same as Lower Rangitāiki	Same as Lower Rangitāiki
Toxicants/irritants	>90%	>90%	99%
E. Coli	А	А	А
Benthic Cyanobacteria	А	А	А
Cyanobacteria- planktonic (lake fed rivers)		А	
Deposited fine sediment			
Visual clarity Turbidity			
randaty			

Management focus - water quality

- Stop any increasing nutrient trends
- Reduce sediment loss
- Improve ecological health in streams in the plains
- Understand how nutrients from the catchment and the dam affect ecosystem health in HEP dam lake Matahina
- Maintain *E. coli* levels (do no worse), and improve over time.
- Prioritise key source or "hot spots"

Comfort level?

Others?


Scenarios

Scenarios: exploring alternative futures

Land (and water) use

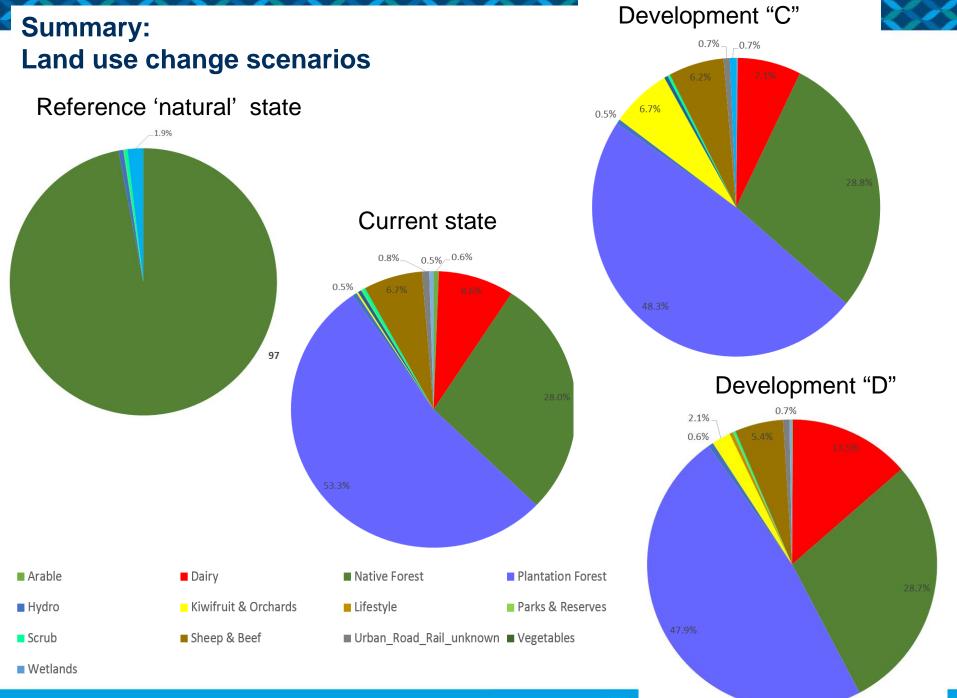
Management or mitigation practices

Workshop 1: Credible futures Rangitāiki

Workshop 4: Credible futures 2030

CARDING STATES AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS

Approach to developing scenarios



Surface Water Catchment Modelling Scenarios

	Scenario	Description
A	Reference 'Natural' State	Natural land cover. No productive/developed land use. No water takes or discharges. HEP scheme not operating. Existing major structural modifications remain in place (e.g., dams, channel straightened and cut to sea).
В	Current/ Baseline	Current land use, estimated current takes, discharges, and land use practice.

Surface Water Catchment Modelling Scenarios

	Scenario	Description	
С	Development	Estimated future credible land use change. Estimated takes, discharges, and land use practice based on the current scenario assumptions, except for known/consented changes like the initiation of the Waiari water supply take.	Horticulture and mānuka expansion, wetlands extend over to full extent of estimated ~2050 sea level rise.
D	Development		Dairy expansion, wetlands extend over part of extent of estimated ~2050 sea level rise.

48

BAY

Development scenarios (C and D)

Used to test

what will happen to contaminant loads, yields

and water quality in the future if "likely/credible"

future land and water use change?

Good practice mitigation scenario (M1)

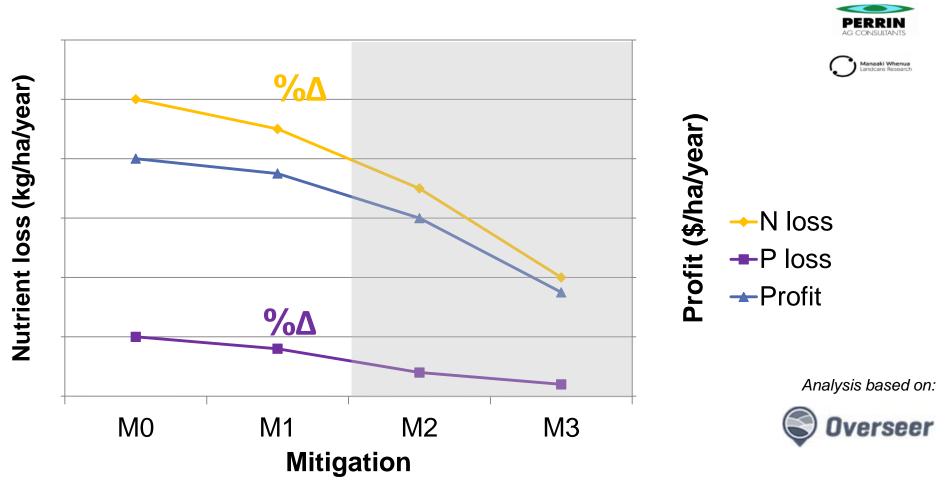
Used to test

what will happen to contaminant loads, yields

and water quality now and in the future if good

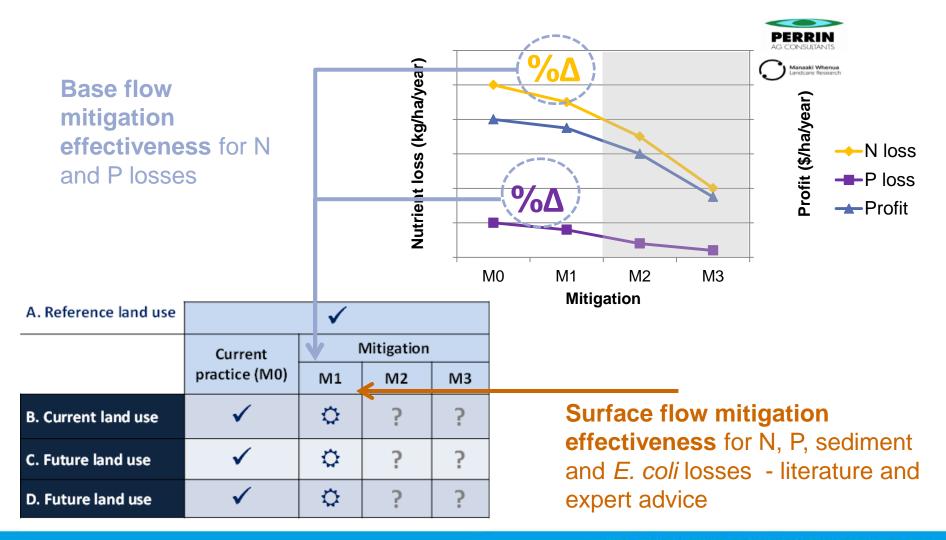
management practice is applied to all land

Mitigation bundles

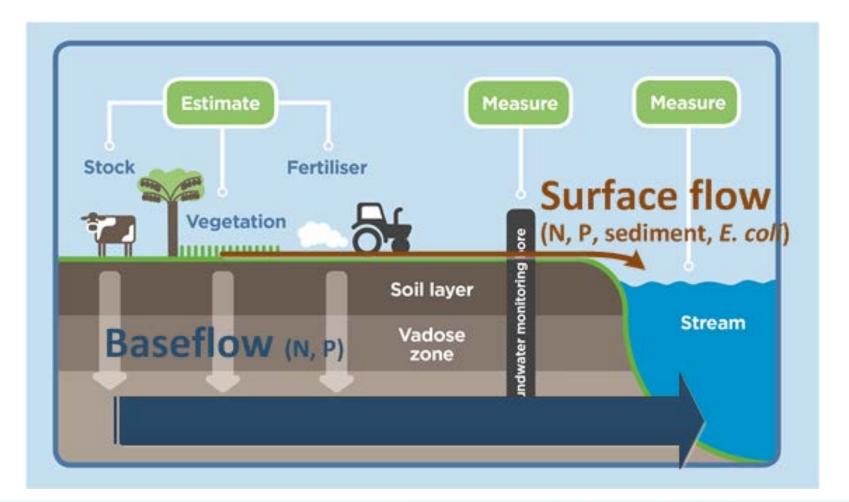

Effectiveness (reduction in contaminant loss)

		Nil	Low	Med	High
ion t)	High				M3
	Med			Μ	12
Cost (% reduct in profi	Low			544	
i.	Nil			M1	

- Based on previous studies and literature
- Group helped to bundle mitigation actions in to M1-M3
- Practices with prohibitive cost and nil or highly uncertain effectiveness not included


Mitigation costs and effectiveness

PerrinAg & LCR assessment for different land uses



Conceptual only, not to scale

Mitigation effectiveness informs modelling scenarios

Base flow and surface flow

Modelling M1 scenario

Contaminant losses applied in Current (B) and development (C and D) scenarios are adjusted based on:

- Assumptions about current good practice mitigations in place
- Area where new individual practices apply (e.g. slope)
- Effectiveness of the practices

*as estimated by APSIM and other methods for use in SOURCE

Modelling Scenarios applied

Land (and water) use	Mitigation and Management		
A. Naturalised State			
	Current practice	Good Management Practice (M1)	
B. Current State	\bigwedge	M1 Current	
C. Future Scenario C	\checkmark	M1 + Scenario C	
D. Future Scenario D	\checkmark	M1 + Scenario D	

Modelling results

Activity:

a) Break into 3 groups

- Red you start at Nitrogen,
- Blue Phosphorous,
- Green E.Coli
- b) You will have approx. 8 mins at each station
- c) Staff member to talk through the maps
- d) General discussion/questions
 - do the results and conclusions seem about right to you?
 - Would you draw other conclusions

7.

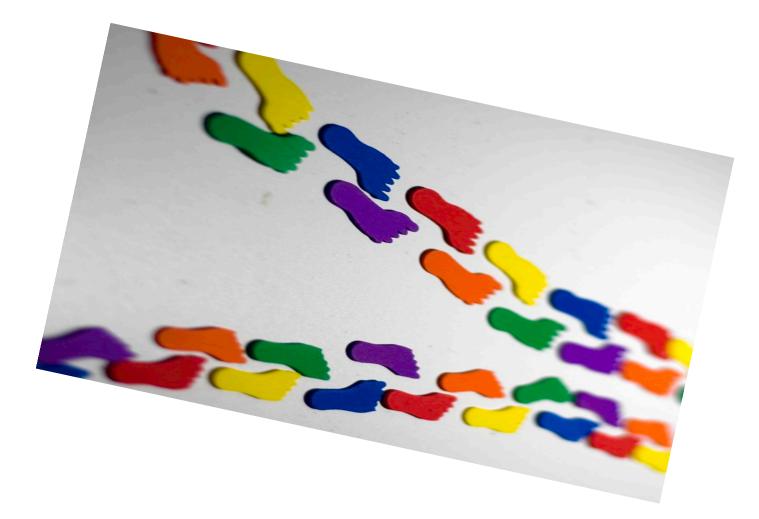
Management options

Potential management options:

- 1. Control land use intensification
- 2. Farm/Orchard Environment Plans good practice
 - a) Estimate nutrient losses and hotspots
 - b) Set specific actions and standards e.g., stock exclusion
 - c) Set a cap or good/practice range of nutrient losses
- 3. Controls on discharges
- 4. Action plans to improve stream ecological health in the plains
- 5. Prioritising action focus catchments

Think beyond

- yourself
- your group or
- organisation


- 1. Break into four groups
- 2. On each table is one of the four management options
- 3. Have a quiet think yourself -post-it per thought
- 4. Group discussion as post your thoughts (Pro, Con, Big ?'s, Options)

When you rotate to a new table – tick any comments you agree with then add your own thoughts on new post-its

8.

Summary and next steps

Where we've been today

Next steps

- Engagement with the public about groundwater (and other topics) after June onwards
- Surface water quantity- August
- Plan drafting

Engagement

- Discussion document
- Continue Iwi and Hapū engagement
- Community/public engagement after Central Government consultation
- Plan drafting

Thanks once

- agepip...
 - Any feedback to us on this session?
- Next session August
- Talk to others