

Bay of Plenty Shelf Water Properties Data Report 2003-2004:

Aquaculture Management Areas

For

Bay of Plenty Shelf Water Properties Data Report 2003-2004:

Aquaculture Management Areas

Report Status

Version	Date	Status	Approved By:
V.2	June 2005	Final	K.Black

It is the responsibility of the reader to verify the currency of the version number of this report. All subsequent releases will be made directly to the Client.

The information, including the intellectual property, contained in this report is confidential and proprietary to ASR Limited. It may be used by the persons to whom it is provided for the stated purpose for which it is provided, and must not be imparted to any third person without the prior written approval of ASR. ASR Limited reserves all legal rights and remedies in relation to any infringement of its rights in respect of its confidential information.

© ASR Limited 2005

Acknowledgements

This work was conducted for Environment Bay of Plenty. EBOP staff participated in the collection of data and were closely involved with the project design and execution. We particularly thank the EBOP Project Leader Stephen Park for his very helpful involvement and Shane Iremonger for his assistance with provision of data and field work. Others closely involved were Paul Dell, Aileen Lawrie and Sam Stephens. The co-operation of the University of Waikato Coastal Marine Group is also warmly acknowledged.

Bay of Plenty Shelf Water Properties Data Report 2003-2004: Aquaculture Management Areas

Initial Data Analysis of Shelf CTD and Water Sample Data to Determine Temporal and Spatial Patterns in the Physical and Chemical Aspects of the Water Column.

Peter Longdill^{1, 2} Stephen Park³ Kerry Black¹

Report prepared for Bay of Plenty Regional Council

¹ ASR LTD, Marine Consulting and Research, 1 Wainui Rd, Raglan, New Zealand +64 7 8250380.

² Coastal Marine Group, University of Waikato, Private Bag 3105, Hamilton, New Zealand.

³ Environment Bay of Plenty – Regional Council, 5 Quay St, Whakatane.

TABLE OF CONTENTS

1 INTRODUCTION	4
2 SAMPLING TECHNIQUES	4
2.1 Sampling Location:	4
2.2 Sampling Program:	5
2.3 Methods:	6
2.4 Analysis Methods	7
3 DATA	
APPENDIX 1. SITE LOCATIONS	
APPENDIX 2 – CHEMICAL AND PHYTOPLANKTON RAW DAT	A30
TABLE OF FIGURES	
Figure 1 - Location of transects within the Bay of Plenty	5
Figure 2 – Temperature (°C) plots from Opotiki, Whakatane and Pukel continental shelf	
Figure 3 - Salinity (psu) plots from Opotiki, Whakatane and Pukehina shelf	on the BOP continental
Figure 4 - Density (σ _t) plots from Opotiki, Whakatane and Pukehina or shelf	n the BOP continental
Figure 5 - Dissolved Oxygen (%) plots from Opotiki, Whakatane and I contiental shelf	
Figure 6 - Turbidity (NTU) plots from Opotiki, Whakatane and Pukehi continental shelf	
Figure 7 – Suspended solids (g/m³) plots from Opotiki, Whakatane and continental shelf	
Figure 8 - Photosynthetically Active Radiation plots from Opotiki, Who on the BOP continental shelf	akatane and Pukehina
Figure 9 - Fluorescence (RFU) plots from Opotiki, Whakatane and Pul	
Figure 10 - Plankton cell (1000's/L) plots from Opotiki, Whakatane an	
Figure 11 - Oxidised nitrogen (gm/m³) plots from Opotiki, Whakatane	and Pukehina on the
Figure 12 - Ammonical nitrogen (NH ₄ mg/m ³) plots from Opotiki, Wh on the BOP continental shelf	
Figure 13 - Dissolved Reactive Silica (g/m³) plots from Opotiki, Whak the BOP continental shelf.	
Figure 14 - Dissolved Reactive Phosphorus (mg/m³) plots from Opotik Pukehina on the BOP continental shelf.	ri, Whakatane and
Figure 15 - Dissolved Reactive Iron (mg/m³) plots from Opotiki, Whale the BOP continental shelf	katane and Pukehina on
Figure 16 - Total Nitrogen (mg/m³) plots from Opotiki, Whakatane and continental shelf	d Pukehina on the BOP
Figure 17 - Total Phosphorus (mg/m³) plots from Opotiki, Whakatane BOP continental shelf	and Pukehina on the
Figure 18 - Total Nitrogen: Total Phosphorus ratio plots from Opotiki Pukehina on the BOP continental shelf.	, Whakatane and
Figure 19 - Dissolved Organic Carbon (g/m³) plots from Opotiki, Wha the BOP continental shelf.	katane and Pukehina on
Figure 20 - Total Organic Carbon (g/m³) plots from Opotiki, Whakatar BOP continental shelf	ne and Pukehina on the
Figure 21 - Sea Surface Temperature in the Bay of Plenty 18/10/2003.	
Figure 22 - Sea Surface Temperature in the Bay of Plenty 2/12/2003	
Figure 23 - Sea Surface Temperature in the Bay of Plenty 19/3/2004	
Figure 24 - Sea Surface Temperature in the Bay of Plenty 25/5/04	

1 INTRODUCTION

This report was produced to assist Environment Bay of Plenty with their internal data reporting requirements. The goal was to provide a summary of the large amount of cross-section data recorded on the shelf in the eastern end of the Bay of Plenty as part of the AMA project over 2003/04. EBOP staff took responsibility for gathering and analysing the data and so this report simply provides assistance with that process. It will be superseded by the joint report produced within EBOP with ASR collaboration. A second goal is to ensure that all data is represented in the report, as the field measurement trips were jointly conducted by EBOP and ASR Ltd.

The magnitude of the effort and the success with the measurements is a credit to the field measurement teams.

Other reports being produced by ASR Ltd on the field data summarise:

- Measurements of currents and temperatures. 12 months of intermittent Acoustic Doppler Current Meter and thermistor records were collected during the 2-year programme.
- Observations with seabed video over the shelf with grain size, mud contents and biological organism assessments.

This report focuses on the water column characteristics during transect surveys.

2 SAMPLING TECHNIQUES

2.1 SAMPLING LOCATION:

The field sampling builds upon a previous survey of the coastal shelf waters undertaken in 1996/97 (Park, EBOP). In Figure 1, three transects in the centre of the bay (Pukehina, Whakatane & Opotiki) running from shore (10m depth) out to the edge of the continental shelf (200m depth) were used for the 2003/2004 field surveys. The Tauranga and Whakatane transects were both used in the 1996/97 survey. Grid references for the sampling points along each of these transects are provided in Appendix 1.

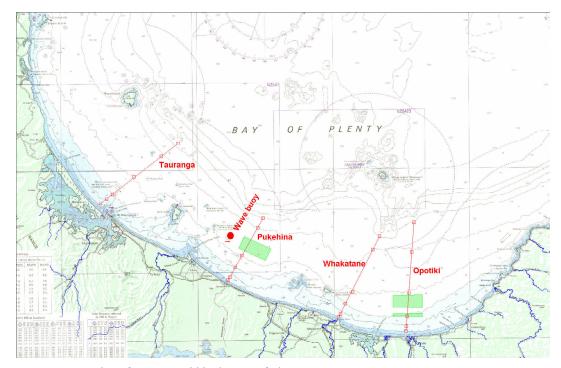


Figure 1 - Location of transects within the Bay of Plenty.

2.2 SAMPLING PROGRAM:

Field sampling was conducted at sites along each of the Pukehina, Whakatane and Opotiki transects shown in Figure 1. Surveys were conducted four times within a year to obtain data on seasonal variations in water quality and plankton assemblages. Each transect has sampling sites set at the 10, 20, 30, 50, 100 and 200m depth contours. This takes each transect from within a kilometre of the shore out to the edge of the continental shelf. This ensured that neritic coastal waters were fully covered and allows comparison to oceanic water masses.

At each of the sampling sites instrument readings, water samples, bacterial samples, and plankton samples were taken at specified depths. Appendix 1 sets out the sampling programme in detail listing depths and all chemical, physical, and biological sampling conducted.

The surface sample (0-5m) for all chemistry and plankton samples taken from each sampling location was obtained as a depth integrated tube sample. All other samples from each of the specified depths were point samples taken with a 3 litre van Dorn bottle.

5

Instruments readings at each site were taken with a SBE 19plus SEACAT Profiler from the surface down to the seabed. This probe recorded temperature, conductivity, pressure (depth), Oxygen (SBE 43), PAR (LI-COR LI-193SA), fluorometer (Turner SCUFA), and OBS (turbidity – Turner SCUFA). In addition temperature and conductivity were recorded from the water samples retrieved with the van Dorn bottles for sample analysis using a hand held YSI meter.

Samples were obtained on all transects within a day of the following dates:

17/10/03,

03/12/03,

18/03/04,

25/05/04,

01/08/04.

2.3 METHODS:

The following methods were used to derive the results from the field sampling. All samples for chemical analysis were stored and returned with the time period stipulated according to the method requirements;

Table 1 - Methods used for chemical / biological analysis.

Parameter	Method	Detection Limit [†]
Suspended Solids	APHA method 2540D	0.1 g/m^3
Total Organic Carbon	catalytic oxidation, IR detection. APHA 5310B 20 th ed. 1998	0.5 g/m^3
Dissolved Organic Carbon	0.45 μm nylon filter, catalytic oxidation, IR detection APHA 5310B	0.5 g/m^3
Dissolved Reactive Silica	On-site filtration of sample. Molybdosilicate/ascorbic acid reduction	1 mg/m ³
Dissolved iron	On-site filtration of sample. 0.45 µm filtered sample. ICP_MS ultratrace with dynamic reaction cell. APHA 3125B	4 mg/m ³
Total nitrogen	persulphate digestion, auto cadmium reduction, flow injection analyser	1 mg/m ³
Ammonium nitrogen	NWASCO Misc Pub. No. 38, 1982. phenolhypochlorite colorimetry	1 mg/m ³
Oxidised nitrogen	flow injection analyser, APHA 4500 NO3-1	1 mg/m ³
Total Phosphorus	acid persulphate digestion, molybdate colorimetry. Flow injection analyser. APHA 4500-PH	4 mg/m ³
Dissolved Reactive Phosphorus	NWASCO Misc Pub. No. 38, 1982. Antimony – phosphate – molybdate	4 mg/m ³
Phytoplankton	Phytoplankton samples were collected from set depths using a van Dorn bottle with the exception of the surface (0-5m) sample which was obtained from a depth integrated tube sample. Around 250 ml of sample was preserved with Lugol's Iodine. These samples were then sent to NIWA in Wellington for analysis by either Hoe Chang or his technical assistant Rob Stewart. Taxa were identified to at least genera or species if possible and quantitatively counted.	

†Detection limit with 95% confidence, some results are below this level

2.4 ANALYSIS METHODS

The raw data from both the CTD (data at each meter down the water column) and also from the water samples (data more sparse at discrete intervals – see Appendix 1) were plotted using Golden Software's Surfer software. Details of the gridding methods and dimensions are tabulated in Table 2.

Table 2 - Gridding methods used in the plotting of data.

	Transect	Grid extent	Gridding method	Grid cell size
	Opotiki	0 – 38000 m(x), 0 210 m(y)		
CTD Data	Whakatane	0 – 31000 m(x), 0 210 m(y)	Krigging	300 m(x) x 3 m(y)
	Pukehina	0 – 25000 m(x), 0 210 m(y)		
	Opotiki	0 – 38000 m(x), 0 210 m(y)		
Chemical Data	Whakatane	0 – 31000 m(x), 0 210 m(y)	Triangulation with linear interpolation	3000 m(x) x 15 m(y)
	Pukehina	0 – 25000 m(x), 0 210 m(y)		

3 DATA

Plots of water properties over the three transects and five time periods sampled are shown in the figures on the following pages.

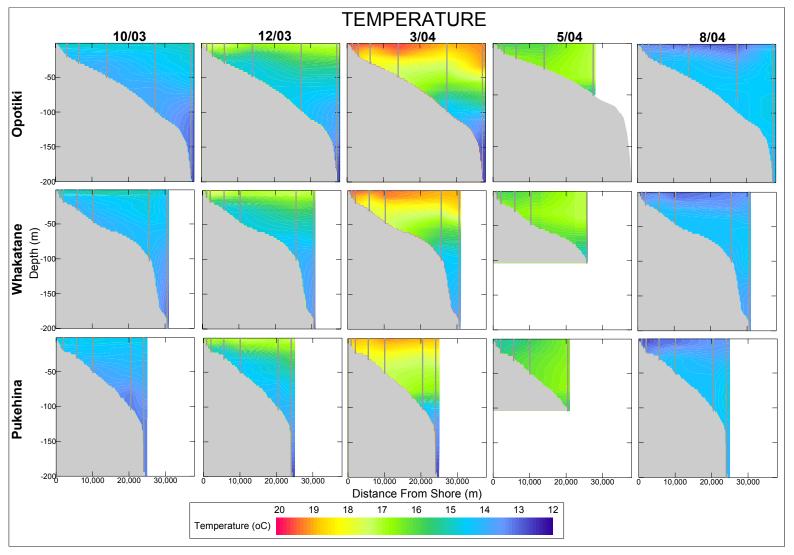


Figure 2 – Temperature (°C) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

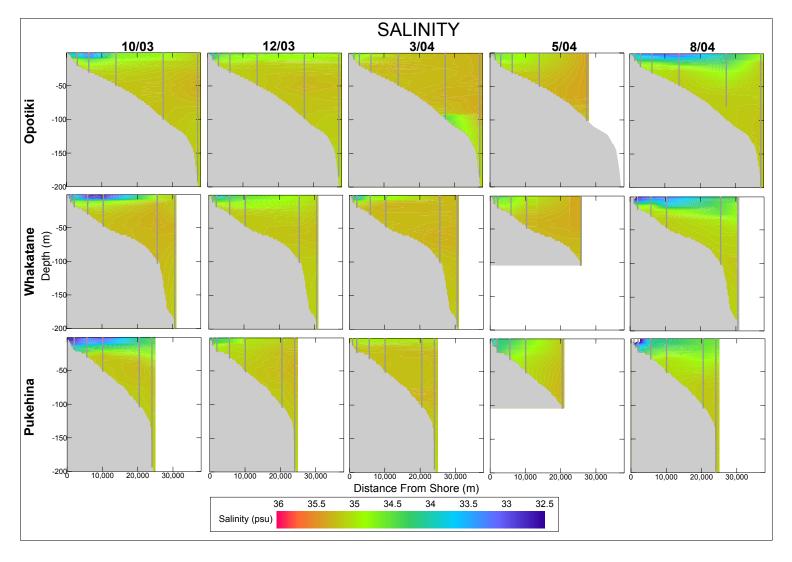
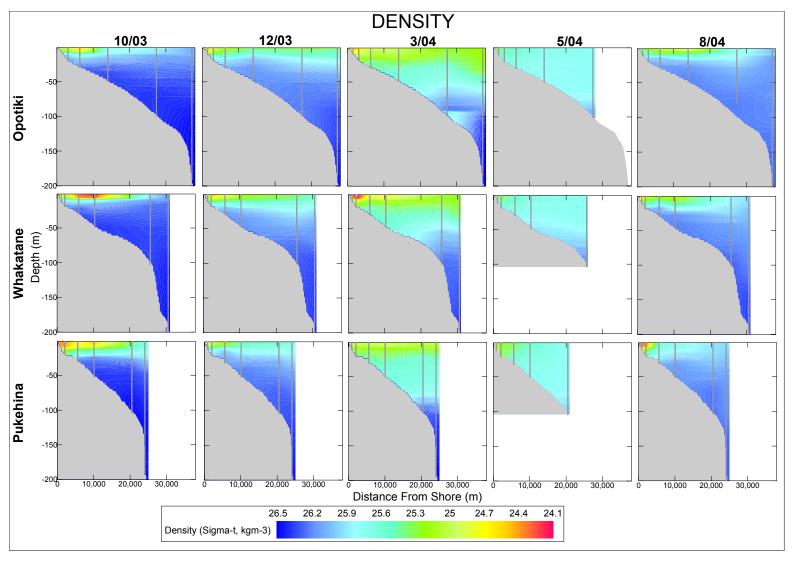



Figure 3 - Salinity (psu) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

Figure 4 - Density (σ_t) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

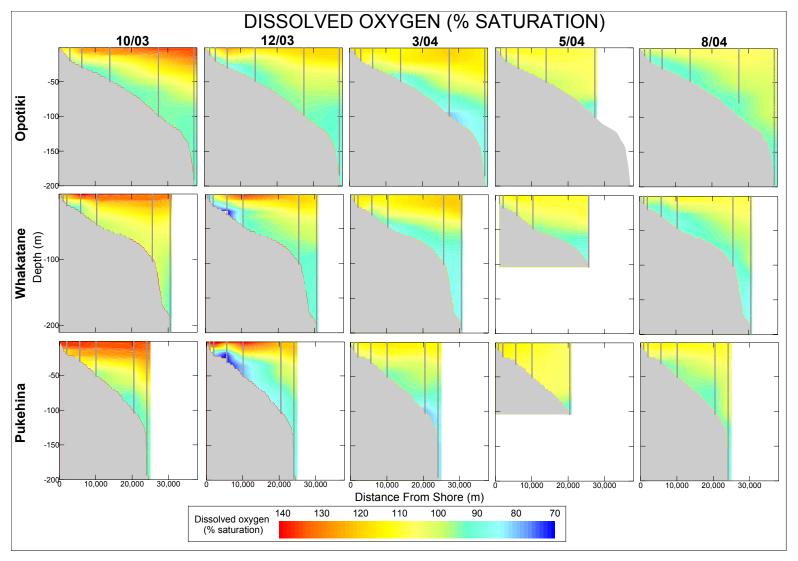


Figure 5 - Dissolved Oxygen (%) plots from Opotiki, Whakatane and Pukehina on the BOP contiental shelf.

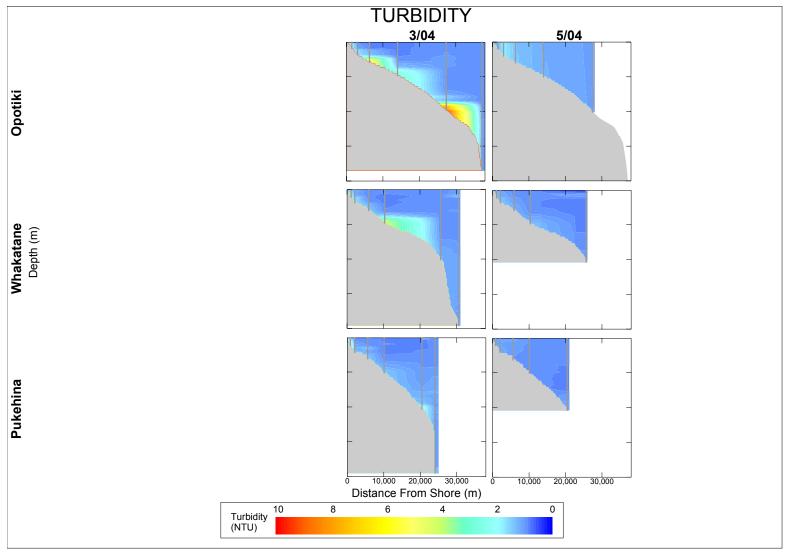


Figure 6 - Turbidity (NTU) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

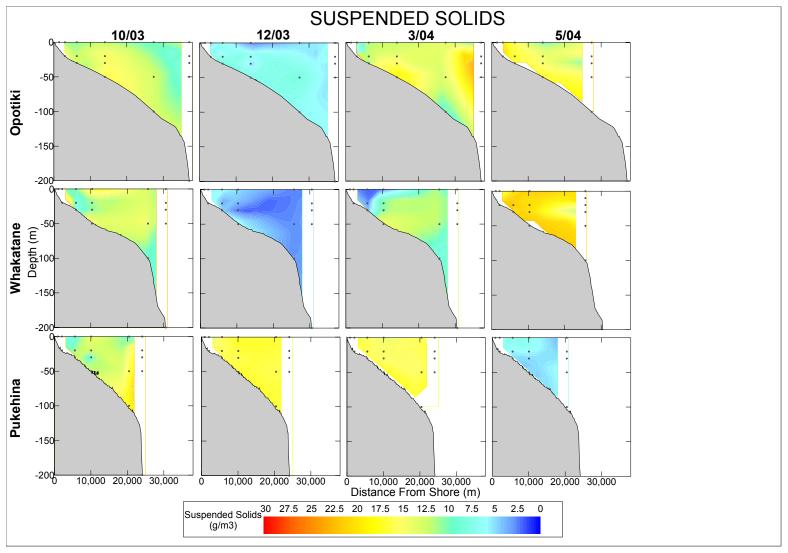


Figure 7 – Suspended solids (g/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

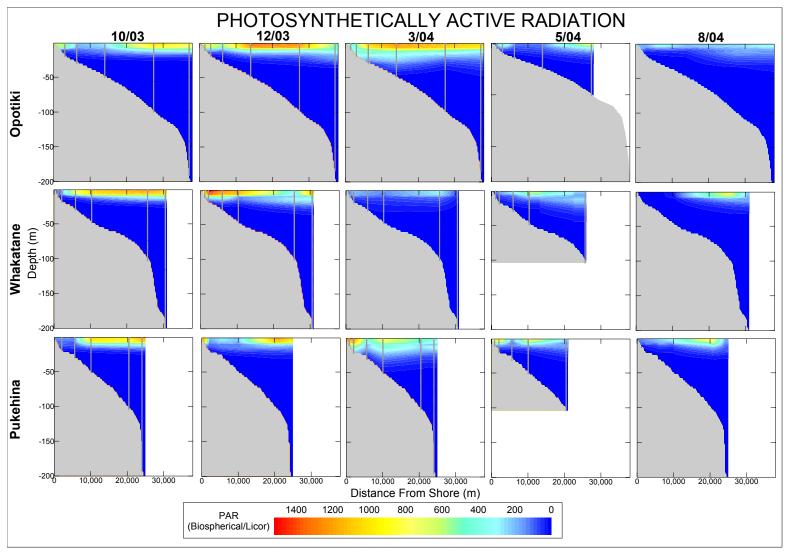


Figure 8 - Photosynthetically Active Radiation plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

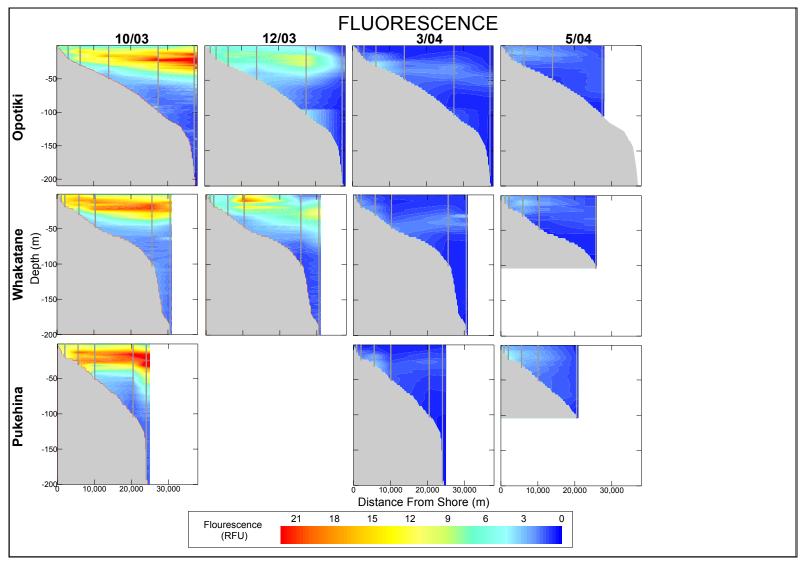


Figure 9 - Fluorescence (RFU) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

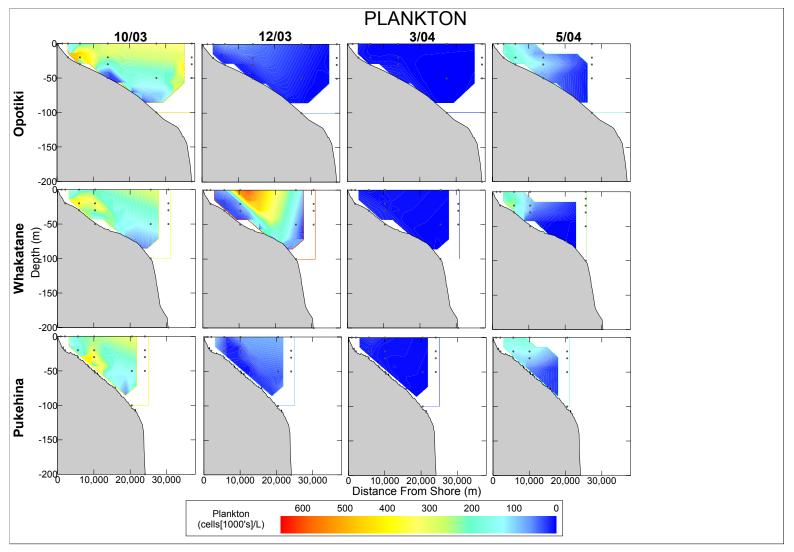


Figure 10 - Plankton cell (1000's/L) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

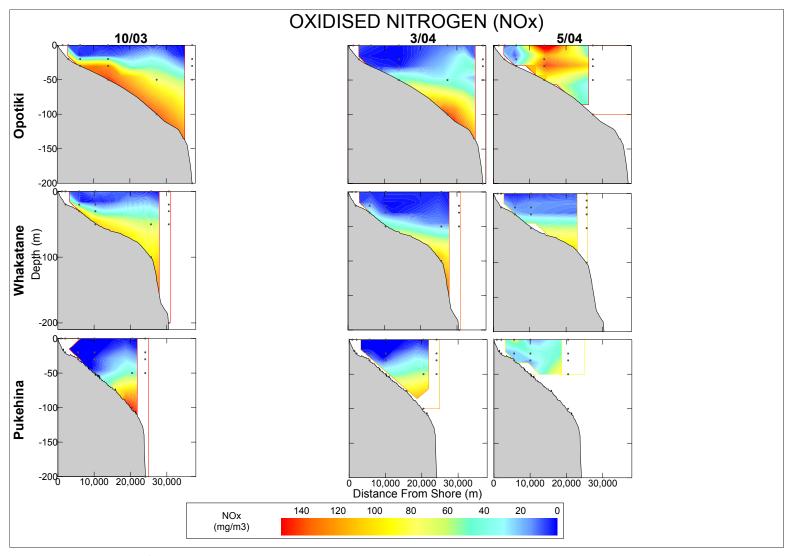


Figure 11 - Oxidised nitrogen (gm/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

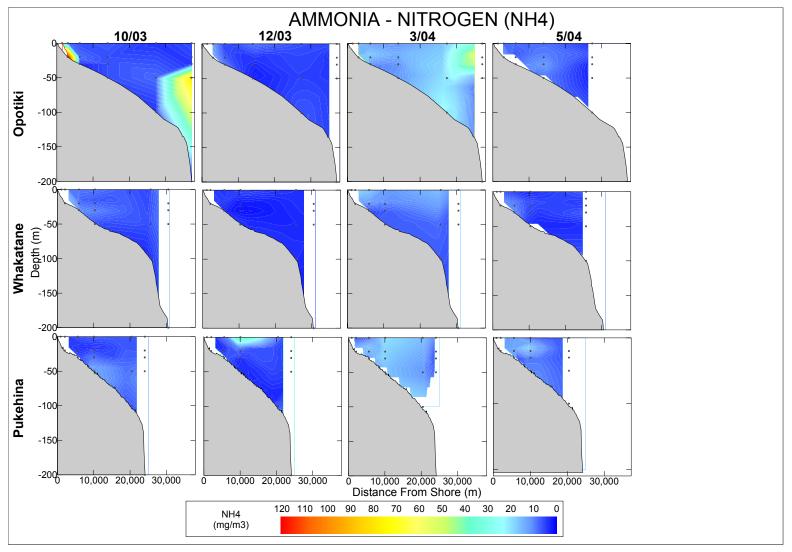


Figure 12 - Ammonical nitrogen (NH₄ mg/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

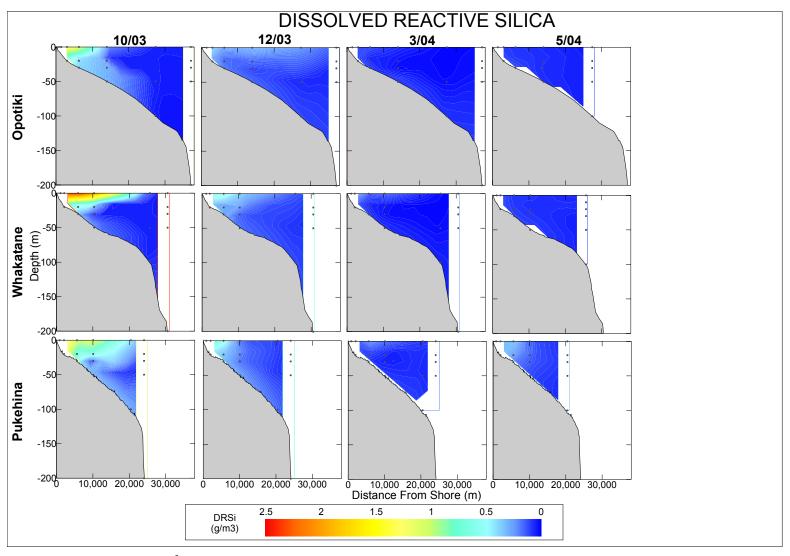


Figure 13 - Dissolved Reactive Silica (g/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

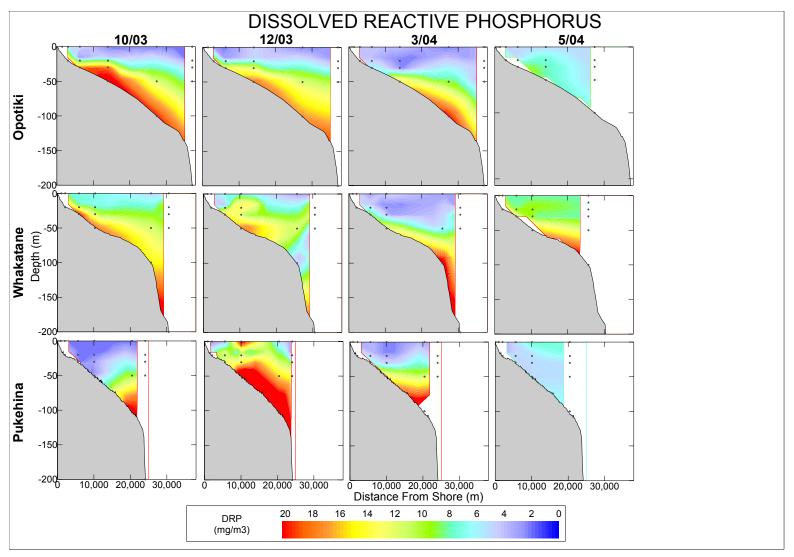


Figure 14 - Dissolved Reactive Phosphorus (mg/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

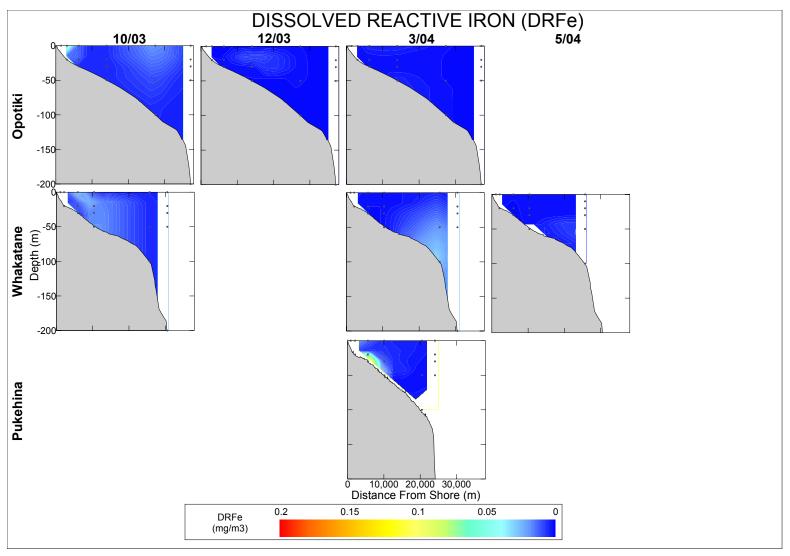
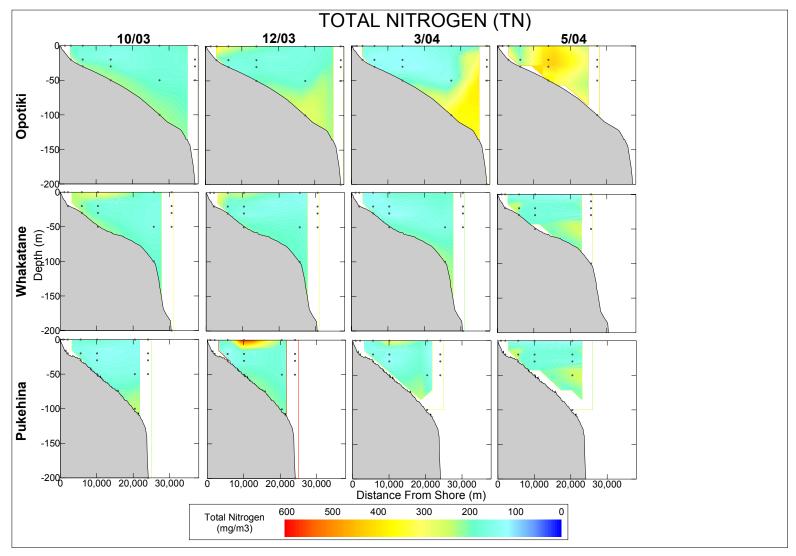



Figure 15 - Dissolved Reactive Iron (mg/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

Figure 16 - Total Nitrogen (mg/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

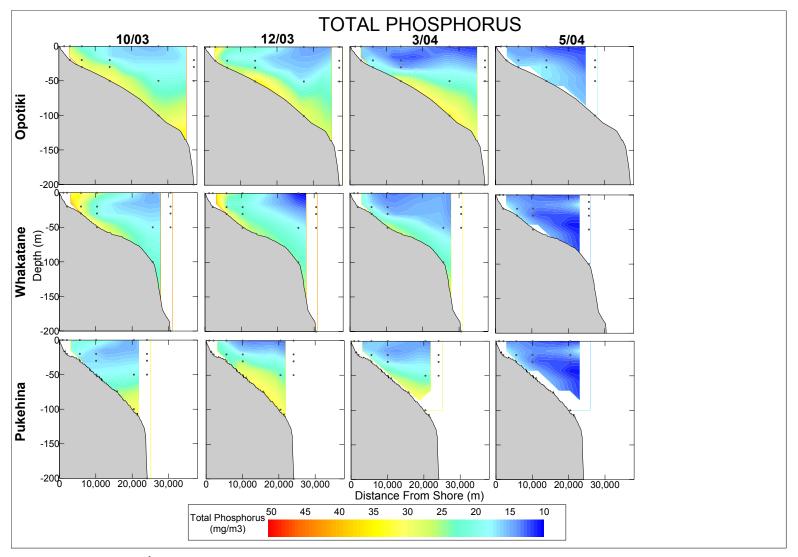


Figure 17 - Total Phosphorus (mg/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

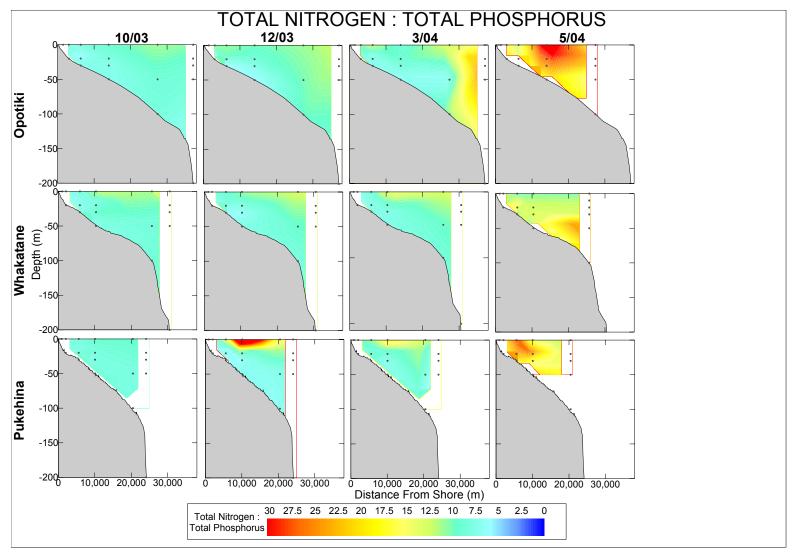


Figure 18 - Total Nitrogen: Total Phosphorus ratio plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

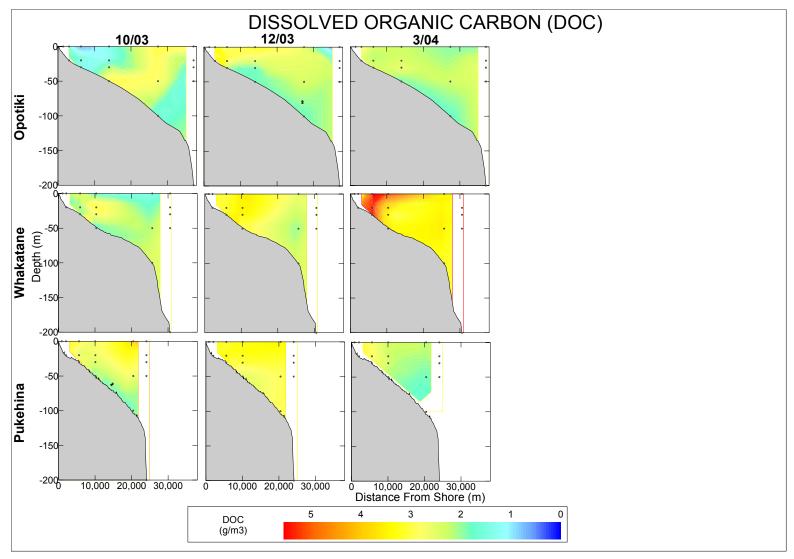
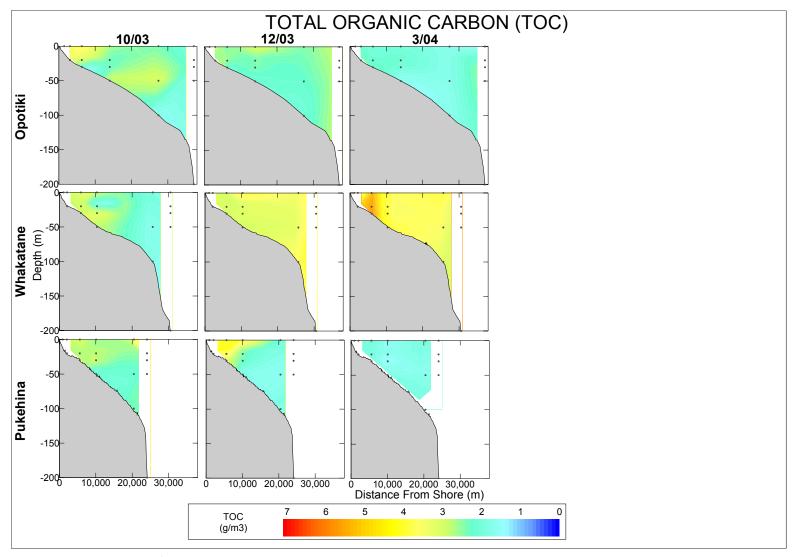



Figure 19 - Dissolved Organic Carbon (g/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

Figure 20 - Total Organic Carbon (g/m³) plots from Opotiki, Whakatane and Pukehina on the BOP continental shelf.

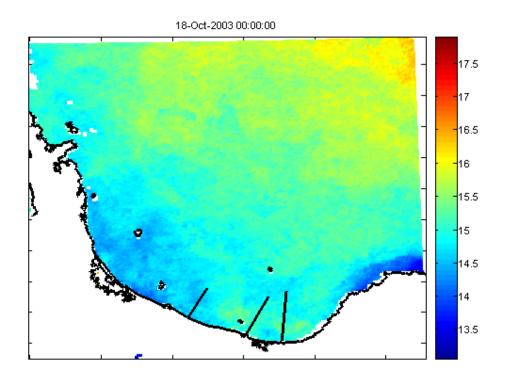


Figure 21 - Sea Surface Temperature in the Bay of Plenty 18/10/2003

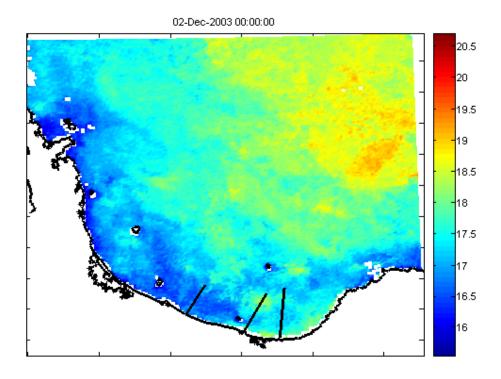


Figure 22 - Sea Surface Temperature in the Bay of Plenty 2/12/2003

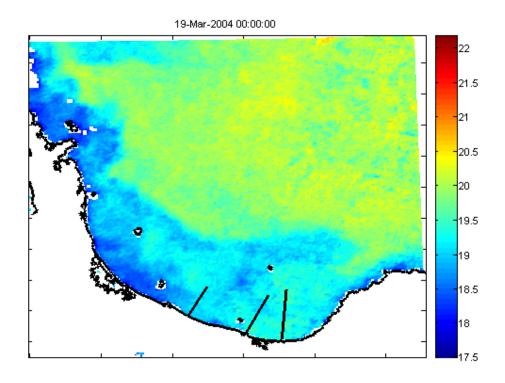


Figure 23 - Sea Surface Temperature in the Bay of Plenty 19/3/2004

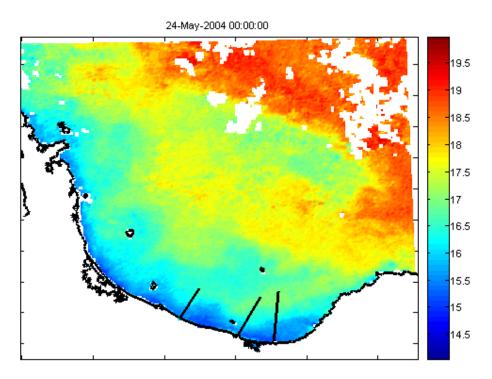


Figure 24 - Sea Surface Temperature in the Bay of Plenty 25/5/04

APPENDIX 1. SITE LOCATIONS

Sampling Sites

	Latitude	Longitude	NZMS 260 Grid ref. (m)	labstar#
Tauranga Transe	ect	-		
10 m depth	37 35 40.9	176 08 34.8	27877376395999	730031
20 m	37 34 53.4	176 09 54.0	2789731 6397394	730032
30m	37 34 05.5	176 11 13.2	27917256398800	730033
50m	37 31 00.0	176 16 00.0	27989666404261	730034
100m	37 27 45.0	176 22 21.0	2808542 6409921	730035
200m	37 25 12.0	176 25 43.0	28136826414446	730036
Pukehina Transe	ect			
10m	37 49 25.3	176 36 34.8	28278926369054	730043
20m	37 48 51.6	176 36 59.3	28285336370066	730044
30m	37 47 11.5	176 38 10.8	28304086373078	730045
50m	37 45 05.0	176 39 41.1	28327746376884	730046
100m	37 40 12.4	176 43 10.9	28382786385687	730047
200m	37 38 30.7	176 44 23.6	28401896388745	730048
Whakatane Tran	sect			
10m	37 56 02.0	177 00 53.3	28629826355319	730037
20 m	37 55 35.4	177 01 17.3	28636046356112	730038
30m	37 53 43.1	177 02 22.4	28653486359500	730039
50m	37 51 41.9	177 04 00.0	28678996363125	730040
100m	37 44 12.9	177 08 30.5	28751416376649	730041
200m	37 41 51.9	177 10 02.0	28775806380891	730042
Opotiki Transec	t			
10m	37 58 41.4	177 15 44.1	28844796349415	730049
20m	37 57 50.0	177 15 47.5	28846366350990	730050
30m	37 56 04.3	177 15 58.0	28850476354233	730051
50m	37 51 55.7	177 16 23.1	28860216361859	730052
100m	37 44 42.6	177 17 06.2	28877106375147	730053
200m	37 39 27.4	177 17 37.3	28889336384817	730054

Sampling plan for phytoplankton identification and enumeration, 168 spot samples (14 per transect)

Sample	Sampling S	Station (d	epth cont	our m)		
Depth (m)	10	20	30	50	100	200
0-5 .	X	X	X	X		X
10	•					
20	X	X	X		X	
30			X		X	
50				X		X
100				X		
200						

Sampling plan for TN, TP, SS, DRSi, DFe and TOC/DOC, 192 spot samples (16 per transect).

Sample	Sam	pling Sta	tion (dep	th contou	ır m)		
Depth (m)		10	20	30	50	100	200
0-5.		X	X	X	X	X	X
10							
20		X	X	X	•		
30			X	X	•	X	
50					X	X	
100						X	
200							X

APPENDIX 2 – CHEMICAL AND PHYTOPLANKTON RAW DATA

In the following results the first column lists the transect sampled (Pukehina, Whakatane & Opotiki) with the depth contour along the transect given in the fourth column, then the actual water depth at that site from which the samples were taken. The following abbreviations and units are used;

Temp temperature (degrees Celsius)

Cond conductivity @ 25 °C

Saln salinity

Secchi disc (measured in metres without a viewing tube)

Vlec vertical light extinction coefficient derived from PAR measurements

Ent Enterocci number cfu/100ml
PH pH measurement @ 25°C
SS Suspended Solids (g/m³)
TOC Total Organic Carbon (g/m³)
DOC Dissolved Organic Carbon (g/m³)

DNPOC Dissolved non-purgable organic carbon (g/m³)

NPOC Non-purgable organic carbon (g/m³)
DRSi Dissolved Reactive Silica (mg/m³)

Dfe Dissolved iron (mg/m³)
TN Total nitrogen (mg/m³)
NH4 Ammonium nitrogen (mg/m³)
Nox Oxidised nitrogen (mg/m³)
TP Total Phosphorus (mg/m³)

DRP Dissolved Reactive Phosphorus (mg/m³)

Chla Chlorophyll-a total filterable on 0.7μm (mg/m³)
Nanochla Chlorophyll-a for plankton 0.7-20μm (mg/m³)
Microchla Chlorophyll-a for plankton 20-200 μm (mg/m³)
Plankton Phytoplankton (thousands of cells per litre)

lankton	,	6.15	210.0		234.0	286.0	521.0	99.5		0	326.0	485.0	543.0	120.5	7 701	159.0	32.0	139.3	481.0	0 202	408.5	171.0	24.5			309.0	249.5	280.0	15.3	7	151.0	21.7	158.6	0.0	310.7	313.0	53.0	o.c				443.0	
ficroch p		0. 1				9.0				,			0.5				0.2					0.5				0.0	5	0.2				0.3				1.2				<0.1 0.1	8.0	0.8	
NanoCr Microch plankton	•	- O O O				0.5					, - 6) 5	7				1.2			^	; -	0.8	0.3		•	0.0	9	1.6				4.9			6.5	5.3	7.7	0.			27.08	5.3	
Chla	c	20.0			ď	5 -	2.3	[:		ć	- - -	:	2.5			8.5	4.			4	5 60	ل ن	4.0		č	- 6 0 0	9	1.8			2	5.2			8.9	6.5	o. 4	<u>.</u>		- ;	17.6	6.1	
DRP (c	7 40	7	~ ~	40	1 7	က	7	~ ;	2 5	, ,	1 7	က	9 9	7 5	<u>.</u> ∞	20	7	ω ;	7		6	19	3	7 4	<u>.</u>	, 7	∞	į	4 5	5 rc	11	s c	<u>1</u> و	7	ro (<u> </u>	7 7	12	20	N 6	2	7
<u>م</u>	ć	2 2	7	ب څ	2 5	3 2	17	æ	4 5	<u></u>	2 2	5	17	3 5	ر د در	32	25	8	27	بر در	2 6	8	31	4 :	200	- 42	2	17	ć	8 8	25.5	32	21	3 6	17	† [72	3 5	50	27	2	8	47
×		0.5	0.5	0.5	2 0	0.5	0.5	0.5	0.5	4 t	2 5	0.5	0.5	8 (7 5	=======================================	104	2	0.5	5 5	0.5	3	117	0.5	8 8	7 -		18	72	168	+ ~	118	ω i	13.5	0.5	12	S 4	1	79	40	0.0	2	48 178
NH4 Nox	•		φ.																								ۍ.	12	,	/ c	2 00	126	ဖ	၀ က	7	9	ט פ	4	∞	4 (מים	4	2 80
Z Z	7	145	167	4 1	197	126	131	156	132	154	189	141	139	9 2	3 5	226	266	261	197	32.5	141	175	230	157	148	296		152	0	222	8 8	230	180	224	157	137	194	168	176	225	707	158	241
	u	ია	2	ro u	ט ע	ည	2	S.	יט י	o u	יא כ	,	2	ų	n c	S C	2	30	ro r	n u	20°	20	20	S.	Ω u	o ro	,	2	ı	ر د	9 9	2	C I	o ro	2	S I	د ۵	20.0	9	ıçı	ດ	2	2
DRSi Dfe	7	1300	1000	90	9 5	92	20	300	400	2 2	8 8		20	Č	2000	2300	200	2400	20 20	300	200	20	200	20	2 2	S S	}	20	ć	200	1300	400	1200	94	200	20	000	2 2	22	ଚ :	2	20	. 20
DNPOC NPOC DRSi																																											
000 D			3.0										2.5	4	2 60	2.1	4.	2.5	<u>ر</u> ون و		33	3.0	1.7	4.6	- 'c	, C		5.6	,	4.4	<u> 4</u>	2.0	U.5	0.8	4.	2.2	7 6	3.1	3.0	. 5	- o	4.	2.8
50			3.1										2.5	Ċ	, (2.9	2.7	3.3	0 0	9.6	9.	3.3	5.9	6.6	- t	17		2.0	,	0.6	3.6	3.4	יי קיי	4.	5.6	23	3.0	2.4	3.1	6. 6	<u>.</u>	2.1	1.6
SS	6	7.5	7.8	2 5	5 fc	4	8.2	15	4. 4	‡ č	5 4		27	7	- 45	8.6	ဗ	9.6	9. 1	- 6	=	Ξ	4	£ ;	<u>υ</u> ο	9.5		10		2.6	10.0	16.0		10.0	12.0	16.0	0.0	4.6	13.0	13.0	0.0	2.0	15.0
五	0	8 2.	8.2	χ α 2 α	2 6	8.2	8.1	8.2	8.2	- α ο	82	8.2	<u>~</u>	∞. ~- °	8 2			8.2	∞ 0	ω -		00		8.5			8.2	ω ;		ο c		8.0	ο α	80.0	1.	0.0	0 0	8 2	1.	0.8	- 2	8.1	8.0
Eut	2		0.5		0.5				0.5		0.5					7.0		0.		5.0				20.5							8.0		7.0		₹			2.0		7	,		
Vlec	0.26	9.50	0.24		0 24	į			0.21		0.21				0.37	0.23		0.22		0 22				0.22		0.23					0.25	,	2		0.21			0.25		,			
Secchi			3.5		5.2			(9		6.3				4	4.5		3.5		2 9				5.8		9.9				-	. %		4. Ú		7.4			6.9					
Saln S		33.2		22.5	32.3	33.3	34.7	8	3	34.7	33.3	33.8		8. 5	28.1	29.8	34.7	28.8	34.7	0. 00 0. 00 0. 00	34.7	34.8	34.9	34.2	0.4.5 0.8.0	34.8	34.8	35	ç,	3.4.5 2.1.5	32.4	34.7	21.2	34.7	34.1	34.8	. a	34.2	34.8	8 8	6 85	8.5	34.8
puc	000	070	0961	120	934	080	260	9	030	260	5070	160		9 9			260	415	200	585	260	280	290	190	2 6	250	280	340	962	200	951	260	8 5	22	8	220	2 6	88	270	2 20	2 2	8 8	8 8
m C	15.	15.2	4.9	7 6 7	5. 5	14.6	14.5		4. č.					14.2	5.9	5.8	4.9	Ö.	4.4		4.5		4.2					14.7 5												۰ ب	- ∞	00 0	13.4 55
pth Te			0 8							35				3 5 - 1						3 o					3 6			8 5								2 8					•	•	202
contour depth Temp	2 5	28	8 8	3 8	8 8	20	20	ය ද																							20.												200
	395	96	266	0 0	8	20	20	8 8	5 č	8 8	20	88	60 5	5 5	52	29	22	8 2	200	3 5	62	63	<u>8</u>	92	2 2	88	69	2 5	- £	<u>ر</u> ا	4	ن 5	<u> </u>	. 20	9	3 5		3	54	22 22	27	8 28	3.6
sample		3 03/4996	3 03/4997	03/4999	3 03/5000		3 03/5002	3 03/5003		03/2006	03/2007	03/2008	03/2009	03/5010	03/5055	03/2056	03/5057	03/5058	03/5060					03/5065	03/5067	03/5068	03/2069	03/5070	03/5077			03/5015	03/5017	03/5018		03/5020	03/5022			03/5025			03/5030
date 16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	16/10/03	17/10/03	17/10/03 (17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03	17/10/03		7/10/03	7/10/03			17/10/03		7/10/03	7/10/03
Ö								g c		•	Ť	•	•	מים מים												•				<u>.</u>	•				_		•	_			-	- 1	
Transect	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukenina	Pukehina	Pukehina	Pukehina	Pukehina	Pukenina	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatan	Whakatane	Whakatane	Whakatane	Whakatan	Opotiki	Opotiki	Opotiki	O C	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki Opotiki	Opotiki	Opotiki	Opotiki

lankton 199.5 135.0 54.6	10.0	73.0	17.0	١./		7.1	86.0	134.0		37.0	2.0	68.7	6.3	55.0	39.0	19.3	0.0			C 40		3.5	46.0	58.0	36.0	31.0	9 099	24.0	41.0	5.6			2.3		
licroch p 0.7 0.6		0.7	0.1			0.05	7.0	6.0		0	0.1			0.3	0.5	0.2	6.0		0.05	60.0	0.1			0.3	0.7		,	4.	0.05	0.05		0.05		0.00	
NanoCr Microch plankton 1995 1.6 0.7 135.0 1.8 0.6 54.6		0.9	- (0.7		0.05	5	0.9		7	- 0.			6.0	9.0	4.0	9.0		0.05	D.	1.			1.7	9		,	4.	0.4			0.05		-	
Chla Ni 2.3 2.4		1.0	Ξ:	0.3		0. c	0.	8.			0.5			1.2	1.1	9.0	5.		0.1	<u>`</u>	1.2			2.0	Σ. Ο		,	t (0.5	7.0		0.0 1.0		7.	
DRP (4 t	22 «	4 ;	, S	163	79	იო	ω <u>4</u>	27	n r	5	7	w ź	<u>.</u> ح	2	2 5	<u> </u>	12	17	o eo	5	9	<u>ه</u> 9	ıç, ı	ი ^	က	7	17	9	2 6	12	4 0	22	۸ ت	22
TP DI 28 23 24 24	5 5 2	13	. 5e	13	25	33	2	12	33	65 50 50 50 50 50 50 50 50 50 50 50 50 50	28	23	16 27	22	17	52	5 1	1	29	0		?	۶ ک	8 3	- 2e 2e	19	8 %	20	52	10	19	7 5	: ;	<u> </u>	53
XoX																																			
AHN 6 4 2 4	04 ~	46	. 7	ი დ	9	7 10	~ ღ	დ 4	ın i	5 5	<u>τ</u> τ	4 (9 ^	- თ	4	m r	v (C	2	~ ′	o m	4	4 .	ით	က	0 4	ro i	ი დ	0 0	Ψ.	4 4	ო	4 m	7	1 m	0.5
	135	672	158	219 177	179	210	7	129	258	302	145	251	152	216	149	167	154	171	285	8		Š	299	324	232	155	172	162	140	127	180	191 146		3	229
	7 7 7	2 0	1 7 1	7 0	10	0 0	7	7	7	7 0	2 2	7	N 6	v 0	=	0 0	۸ ۷	7	α (٧	7	c	v 0	7	v ~	7	7 0	7 7	7	7 0	7	~ ~	•	7	
: Dfe	- 0 10		o ro	ın ın		ο.	_		ī.	ю r	. 	_	O 4		· m		- «	.	_ ,	.			0 6		.	- 10	~ ^		_			<i>(</i> 0 b			118
DNPOC NPOC DRSI 1200 853 319	888	4 4	<u> </u>	25.	88	<u>8</u> 2	ឥ	47	13	57.	5 2	25	<u>~</u> 4	? .	9	8 5	9 €	2 29	11	3	52	•	79	919	ğ ğ	178	58	2 4	73	2 5	1	116	2	8	÷
NPO																																			
POC																																			
3.7 3.2 2.9				4 7	8	0. 4		3.0	0.0	ο α Ν κ	7.	7.0	ر ان ه		9.5	∞. α		4	80.0	2	2.3	ç										2.4	0	P.	9:
3.9 DO DO 3.9	- 4 -	٥,	ကြေ	ه م	2	o c		1.7	6	4 C	, m	ო (4 و		က	4 +	- 4	7	2.0	n	2.8		ງດຸ	- -	- 0	- (ص ذر	-	٠,٥	⊃ 4.	7	3.7	·	7	3.9 2
F.0.0.0	19.0 19.0	7.0	0.0	0.0	0.9	0.0		16.0 16.0		4. 4 - C	9.9	7.2	0 o	5.7	9.7		i ro	8.2	9.9	. . 6	8.4	9.6	i ro	8,0	5.2	5.6	4 4 4 0	3.8	9.5	4 4	8.	9.5		ŧ	4.2
Hq 8.8 7.9.7 7.9.4	, 0, 0	ν, -	0	5.80	-	0 6	, —	- -	0		6.7	2.5		. 1	. 0.8	O C		_	۰ د	- 0			- -	0	n ←	0.0	2) C	100	0.9	5.4	0.		 .	,	0.
1.0 ct				2.0			į			0	?	_		_				~	_	_			_	_		~ .	_		Ψ,	- -	~		ω.	<i>.</i>	w
2 8338	7	0.14 <1		0.14		Ť.	<u>.</u>		8	ا ا ا	ì	7		0.15 <			12		<u>;</u>	=			29 <1	17	.20 <1		78	2		.15 ×		13 < 1			
	,	7.6 0		5.8		9	,		1	. 4 . 4		4.6		6.2 0			7.2 0			-			3.3 0.	0	6.1		63	,		13.4 0.		1.3			
Sec	n m =	(0 N	.	r –	~ (~ ~	. m	m m	Φ-	_ ^	_	·	~ -		~	~ _		_	O			~			_					•		4			
Saln 33.1 34.8				4 K	8	2 %	8	84 8 8. 9.	8,	n ki	33.	32.6	γ <u>ς</u>	32.5	32.6	, ,	32.5	33.3	33.5	က်က်	8					33.4					• • •	33.5			
Cond S 5030 5070 5270	5280	5240 5250	5290	5030	5250	5280	5270	5280 5280	5290	4886	5060	4958	5030	4955	4990	5040	4963	5080	5050	5000	5020	5100	4714	4833	4910	5080	5010	5050	5090	5030	5060	5100 5020	5060	5100	2060
Temp 17.7 18.2 15.5	15.1							16.1 15.5														5. 6.	19.5	19.1	18.2	15.6	7.6	15.8	15.5		15.6	14.6 17.9	16.7	15.4	14.1
. 50 0 0 c	88	200	8 5	90	200	3 0	28	න ශ	200	0	20	0 2	8 8	90	50	S 6	90	20	<u>6</u> c	28	9	2 5	30	0 6	90	50	3 0	20	္က မ	90	22	8 0	200	2 8	200
contour depth 10 0 20 20 20 20 30 00	888	20	8 2	8 6	9	9 6	200	200	500	2 2	8	88	3 8	20	20	3 2	9 8	9	9 5	88	200	3 8	3 6	2 2	8 8	93	20 20	20	S 2	8 2	8				
																																			•
sample 036100 036101 036102	036104 036105	036106	036108	036110	036111	036112	036114	036115	036117	035980	035981	035982	035984	035985	035986	035987	035989	032990	035991	035993	035994	035995	036080	036081	036083	036084	036086	036087	036088	036090	036091	036092	036094	036096	036097
	883	2/03 0	203 0	2030		2,03	200	888						93	0 50/3		93	0 80/	0 20					0 0 0	88		000	03 00/	03	88		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
date 05/12/03 05/12/03 05/12/03 05/12/03 05/12/03	05/12/03	05/12/03 05/12/03	05/12/03	05/12/03	05/12/03	05/12/03	05/12/03	05/12/03	05/12/03	03/12/03	03/12/03	03/12/03	03/12/03	03/12/03	03/12	03/12/03	03/12/03	03/12/03	03/12/03	03/12/03	03/12/03	03/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03	04/12/03
	ina ina	ina ina	ina	⊒ a	ina	in a	ina	e ii a a	ina :	j 15			5 101	: 15	. . .	= :-	; :=	·= ·	- c	. ve	·= ·	= ·-	atane	atane	atane	atane	atan.	tane	atane	tane	tane.	stane stane	stane tane	tane	ıtanı
Transect Pukehina Pukehina Pukehina	Pukehina Pukehina	Pukehina Pukehina	Pukehina	Pukehina	Pukehina	Pukenina	Pukehina	Pukehina Pukehina	Pukehina	Opodiki	Opotiki	Opotiki	Opolik	Opotiki	Opotiki	O Coorie	Opotiki	Opotiki	Opotik	Opotiki	Opotiki	O Dogik	Whakatane	Whakatane	Whakatane	Whakatane	Whakatan	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane Whakatane	Whakatane	Whakatane	Whakatane

plankton 30.5 9.6 13.5	8.6 9.8	9.0 2.1			2.0	3.6 9.0 9.0	5.1	7.0	6.7		2.5			4. b				2.7) i	10.5 5	23.3	17.6	Ċ	9, 4, 0, 70,	14.0	17.1		0.5	0.6 7.09	8.	16.5
licroch pk 0.1 0.4		0.05	0.05		0.05	0.05	0.05		20	0.05			0.05	0.05	- 60)	90	0.05		0.05			9.0		5	0.05	0.05	0.3		0.05	0.00	0.05	
NanoCr Microch 0.7 0.1 1.5 0.4		0.3	4.0		0.05	0.3	0.5		ć	0.7				0.2			90	0.0	(0.3		0.7	8.0		ć	0.0	0.5	0.7		0.05	2	4.0	-
Chla N 0.8 1.9		0.4			0.7	4.0	9.0		ć	0 0			0.3	0.3	t 0	;	č	0.3	,	0.4		0.8	1.3		3	0.0 4. 6.	9.0	0.		0.0	†	0.5	
DRP (44 /	0 0	4 4	4 =	25	0 0	۲;	4	4 -	1 4	4	4 1	- 4	0 0	4 6	7	o 5	4	4 .	4 0	23	2	3	o ro	6 ,	0 0	က	<u>4</u> c	o O	75	o 0	9 1	72
TP D 15 14 20 20	2 4 9	6 4	17	7 2	32	12	16	4	ن 5	5 5	5	2 %	12	2 5	33 ±	12	2 5	3 ₩	;	12	36	3 23	21	2 12	53	5 4	15	1 28	16	ć	2	12	8
	0.5	0.5	0.5 45	0.5	146	0.5	56	0.5	<u>∞</u> ∝	0.5	4	0.5	4 ←	0.5	9	13	5 3	<u>8</u> 80	0.5	0 5	187	- ^	0.5	5 4	98	o -	0.5	g 4	- 9	127	0.5	0.5	148
NH4 N 18 1 16 2	2 S C	18	6 5	9 =====================================	20	တ ဟ	ω (o E	5	<u>.</u>	12	œ ç	= =	5 5	- 2	17	8 %	37	65	ď	တင္	S 6	- 1	= =	ئ ب	- 6	7	7 91	. ∞	٧ م	ი ი	က	ည
13 35 35 36	8 4 9	307	119	175 211	263	113	24	135	136	128	163	111	126	19	203	161	130	176	3	410	317	149	122	122	178	3 5	113	208 189	151	235	3	133	251
e TN 20 4	120	9	2 2	4 0	4	7	7	7	۲ م	7 7	5	0 C	ı ro	۲ م	4 40	7	2 0	7 7	•	7	2 0	۷ 4	7 0	N 64	0.0	7 7	7	0 L	50 20	¥ ,	7	9	7
RSi Dfe 198 113 125	657 92 92	164 38	2 2 2 3	92 78	6	107	30	167	8 <u>5</u>	<u>3</u> <u>5</u>	117	4 %	82	5 29	117	4	19 8	2 23	8	78	133	314 292	81	37	8 4	<u>-</u> 8	23	79	6	5 29	2	23	19
POC DI	2.0				8.				6.	5	1 .5	ب دن ه	9.		5	1.3	,	- 4	,	9.		1.6	7	<u> </u>	7.7		4.	<u></u>	7.	0. 6	<u>.</u>	1.4	
DNPOC NPOC DRS									-	1.5	1.5	- ~	0.0		1.2	1.	0	0.0	,	.	4	0.2	<u>ლ</u>	<u>† 7</u>	4. 6	5 2	1.0		Ξ	0.7	<u> </u>	1.2	6.0
3.5 3.5 3.1 3.1	3.0	2.3	2.4	2.3	9.1	د هز	2.0	2.0	2.9	2.5	2.3	2.0	2.3	2.4 2.6	, -	1.9	2.3	. 6.	1	7.7	2.3	2.5	5.6	5.4	5.6	3.5	2.9	6. 6. 4. 4	3.6	3.2	9	3.1	5.9
_ ကြက္ဆက္က	2.1			2.0	2.0	5.6	1.5		2.6										1	7.7	2.0	7 8 7 8	5.5	5.8	9.0	3.5	3.5	თ დ დ დ	3.6	3.2	3	2.7	2.8
	5 6 6	<u>4</u> £	र्च छ	5 5	17	16	18	17	80. K	2.8	7	<u>5</u> 4	12	4 6	2 2	4	, ,	8.5	1	/7	5.9		6.5							9 9 9		9.5	4.1
£ 8.8.8.2 2.4.1.2.2	8.1	8. 8. 1. 1.	 8	8. 8. 1. 4.	ω ;	8. % 	7.9	8.2	ω α - τ	1 .	8.2					8.2	ώ α		8.7	× ×	œ ,	- 4	2. c	, œ	∞ œ		. 1.8		8.1		8.2		- œ
Ent p 0.5		0.5		0.5		0.5															ţ	5 6	4		3			0.5		2			
O.25 0.25 0.14	5	0.08		0.09		0.09			0.25	2	0.16		0.09			0.12		0.09			ć	0.18	0	3	0 0	ò		0.10	:	0,10	<u>.</u>		
Secchi 7 6.8 15.4	2	18.0		22.0		22.0		23-	5.4 4.6	į	15.8		27.0			20.8		29.5			-	5.5	7	,	16.0	,		12.5	ı	0.71			
Saln 34.3 34.6 35.1	35.1 35.2	34.6 35.1	35.1 35.1	35.1	35.2	35.1	35.1	34.9	35	34.5	34.8	35.3	35	35.2	35.1	35.3	35.7	35.2	35.2	35.3	35.1									lus			
Cond S 5220 5250 5320 5320							0 0	5290	0 0		5280	.	5310	00	5360	0	0 0	5340	0		5300	5080	5320	5330	5330	5330	9180	5320 5320	5320	5320	5320	5340	5320 5320
_		19.1						- 50000	20.3				20.0								13.9							17.6				9.0	o 1~
epth T				o g																												8 5	•
contour depth Temp 10 0 19.4 20 0 19.2 20 20 18.5 30 0 10.5	8 8 8	20																															
sample 04/1584 04/1585 04/1586 04/1586	04/1588	04/1590	04/1592 04/1593	04/1594 04/1595	04/1596	04/159/	04/1599	04/1601	04/1652	04/1654	04/1655	04/1657	04/1658	04/1659	661	662	663 664	665	999	/ 899 899	699	200	707	206	710	712	713	715	716	717	719	22	722
				4 4 9 4	40 4	9 4	9 5	9	4 04/	4 04/	4 04/1	9 4	4 04/1	4 4 0 4/2 1 4/3	4 04/1661	4 04/1662	4 04/1663 4 04/1664		4 04/1666				4 04/1707		4 04/1710 1 04/1711			1 04/1/14 1 04/1715		04/1717			04/172
date 15/03/04 15/03/04 15/03/04	15/03/04	15/03/04	15/03/04 15/03/04	15/03/04 15/03/04	15/03/04	15/03/04	15/03/04	15/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	16/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04	17/03/04
Transect c Pukehina Pukehina Pukehina	Pukehina Pukehina	Pukehina Pukehina	Pukehina Pukehina	Pukehina Pukehina	Pukehina	Pukenina Pukehina	Pukehina Pukehina	Pukehina	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki Whakatan	Whakatane	Whakatane	Whakatane	Whakatan	Whakatan	Whakatane	wnakatane Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane

lankton 207.5	218.5	34.3	165.0	0.07	90.3	71.8	39.8	5.0	:	1.8	3.8	0.1		0.2	109.0	224.0	103.5	112.3	201.5		91.5	46.0	125.0	54.5		9.5	7.8	7 %	300.0	186.0	145.5	163.5	120.0		223.0	151.0	108.5	43.0		5.3	13.0	14.4	
ficroch p	99.0	0.46			0.48	0.46	0.52	0.14		0.46		4.0		0.04		0.59	0.61				0.5	0.4	0.5	0.31		4.0	O. 4	0.24	7.0	1.12	1.18				0.86	0.99	0.64	0.62		0.36	0.34	0.58	
NanoCh Microch plankton 207.5	1.54	0.81			1.81	0.52	1.02	0		0.07		0.07		0.01		1.39	2.67				1.1	0.86	1.03	0.59		0.05	0.0	0.03	3	1.73	1.79				5.06	1.74	1.38	0.95	,	0.09	0.12	0.09	
	2.2	1.3			2.3	10	5.	0.2		0.5		0.5		0.1		2.0	3.3				1.6	ا ن	1.5	6.0	,	0.5	Q. 4	6	9		3.0				2.9	2.7	5.0	9.		0.5	0.5	0.7	
ORP 8	œ	4	ω α	° 2	. 00	10	0	17	œ	œ	œ	œ	12	54	2	S	ω	S	5	10	ა	œ	œ	۵	ις.	ın ı	n u	۸ د	ري.	က	ო	S,	S.	2	œ	2	2	2	~	7	2	2 /	
۳ ت ۲	13	7	4 4	2 12	. 6	4	12	17	=	15	22	12	9	7	15	14	18	15	15	17	12	15	18	17	=	<u>e</u> (2 5	<u> </u>	9	4	4	4	4	16	13	4	15	13	4	4	15	4 5	
F κ	-	ജ ;	5.2	± 5	4	20	14	89	6	10	20	6	99	123	19	4	36	20	ო	23	195	95	156	82	16	မ္တ ;	4 6	84	- ∞	5 8	19	64	9	7	9	30	9	14	9	45	630	82 3050	
NH4 Nox	9	13	4 -	= =	<u>ر</u>	7	4	က	7	ო	5																7 0	۷ (۵	, =	=======================================	12	4	12	4	œ	19	9	_	7	9	9	8 /	
^ Z Z Z	154	205	135	145	139	179	166	183	113	180	330	155	290	146	200	234	360	194	202	206	423	452	464	333	187	274	74/ 175	324	279	253	259	417	316	258	178	366	208	282	175	174	940	246 3920	
∍ T	7	7	7 0	۷ ۷	٦ ا	2	7	7	7	7	7	7	Ξ	7	7	7	7	7	7	7	7	7	7	7	7	~ 0	7 0	۱ ر	1 0	7	7	7	7	7	7	7	7	7	7	7	2	m 10 10	
Si Dfe 228	128	120	£ 8	103	85	92	83	107	47	29	111	49	45	49	191	93	114	87	89	125	99	22	65	20	4 1	47	6 4 0 4	3.5	34.	327	9	349	248	195	40	142	135	105	83	99	6	67 62	
2C DR.	m m	ا	ر د ن	iro	2	Ţ.	τ.	· -	Ψ.	9	4	7	ωi	τ.	4	9.	G	٠.	_	O	ω	w.	9	ı.	4.	4.	4. c.	o o	, w	w.	7		-	-	·	-	-	Ψ.	ص ·	.	τ.	o; ←	
CNPC		ω.	w 4			7			7		4	4		7	7	_			_	7	-		~	~	_	~ .	- ~			_	-	7	~	_	_	_	٥.	_	o ~ .		۰.		
DOC DNPOCNPOCDRSi 1.4 1.2 22	-	,		<u>: ~</u>	7	7	÷	7		-	÷	5,	÷		-	"	. .		÷	7		7.	÷.	÷:	7			7	7.	•	1.1	1.2	1.2	=	<u>-</u> -	7.	7.	7.		,	7.	- 1	
- 20 20																																											
SS 11	16	22	3 %	2 2	52	50	21	52	20	18	5 4	10	20	55	6	20	55	16	17	17	9.4	15	12	17	12	<u></u>	ه د	202	6	5.8	8.2	7.4	5.6	4.8	_	9.9	4.8	4	6 6 6 6	3.6	8.0	9.9 0	
편 ₈	<u>~</u>	ω ;	× ×	φ τ	89	∞ 1	89	<u>8</u>	8.1	8.2	%	<u>%</u>	<u>~</u>	œ	<u>ω</u>	<u>∞</u>	<u>8</u>	<u>8</u>	∞ 1	8.	8. 1	œ —	œ.	8	œ .	× 0	o «	, w	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	∞ —	œ (8 6	 	7.7	
E															0.5			0.5			0.5				0.5				2.0			0.5			1.0				0.5				
VIec 0.22	0.23	,	0.18		0.15				0.08						0.16	0.55		0.19			0.13				0.09				0.30	0.26		0.18			0.19			!	0.10				
Secchi 4.2	6.3		Ø.		9.2				18.2						5.2			8.2			11.0				10.1					6.2		8.7			13.1				œ —				
	33.8	8 9	8 8 7 4	8	34.5	34.3	34.8	34.9	34.8	34.8	34.8	34.7	34.6	35.0										;	94.9	2. 5. 2. 5.	2. 2.	34.8	33.2	33.4	33.9	33.6	34.1	34.2	34.2	34.4	34.5	34.7	9. 5	34.0 0.45.0	34.9	8 4 8 4	
Cond 2080	5140	5250	5210	5270	5230	5210	5270	5280	5270	5270	5270	5260	5240	2300											5290	2230	5280	5280	4957	5140	5170	5120	5190	5200	5210	5220	5230	5260	5290	5290	5290	5270 5210	
				16.3											15.2	15.8	16.5	15.9	16.0	16.6	16.1	16.2	16.4				17.0								15.8				ر د	ο.	۰ ۱	16.6	
- o	0	2	2								20								20								3 5											පු	۰ و	₹ 8		3 일	
contoul depth emp 10 0 15.4	2 2	2 2	8.8	8	20	20	20	20							9	2	20	ജ	၉	၉	S 1	20	20	S (3 5	3 5	8 6	9	5	20	20	8	ଚ	ළ	දු	က္က	20	දු ද				38	
	043058	043059	9 5	043062	043063	043064	043065	043066	290	043070	071	072	890	690	103	108	109	110	11	115	<u> </u>	1 5	115	116	_ ;	0 6	120	12	127	128	129	93	131	132	33	34	135	92 1	75	200	3 5	<u>4</u> 4	
														4 043069					4 043111	4 043112	4 043113	4 043114	4 043115		4 043117			4 043121	4 043127	4 043128	4 043129	4 043	4 043131	4 043132	4 043133			4 043136		045158		4 043140 4 043141	
date 24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	24/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	25/05/04	26/05/04	26/05/04	26/05/04	26/05/04 043130	26/05/04	26/05/04	26/05/04	26/05/04	26/05/04	26/05/04	26/05/04	20/02/04	0/00/07	26/05/04 26/05/04	
	Whakatane	Whakatan	Whakatane	Whakatane	Whakatan€	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatane	Whakatan	Whakatane	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	Opotiki	¥ :	Opotiki	Opotiki	Opotiki	Opoliki	Opotiki	Opotiki	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukehina	Pukenina	Pukenina	enina	Pukenina	